​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​Team Members by Research Area



Infrastructure and Energy Storage Team Members


 

 

Tanvir Tanim, Ph.D.https://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=299Tanvir Tanim, Ph.D. Dr. Tanvir R. Tanim is a Senior Staff Scientist/Engineering and Group Lead for the Energy Storage Technology Group within Energy Storage and Advanced Transportation Department at Idaho National Laboratory, overseeing over 10+ research scientists, engineers, postdoctoral researchers, and interns. Tanvir and his group's research focuses on enabling next-generation high-energy and power lithium-ion batteries, developing advanced algorithms for reliable life estimation, and expanding and/or verifying advanced diagnostics and prognostics of these high-energy and power batteries for electric vehicle applications. Tanvir earned his doctorate in mechanical engineering from Pennsylvania State University, his master's in mechanical engineering from Ohio University, and his bachelor's in mechanical engineering from the Bangladesh University of Engineering and Technology. Before joining INL in 2015, he briefly worked at the Advanced Research Division of Raymond Corporation. Tanvir has so far authored or co-authored 50+ peer-reviewed scientific papers and publications. Dr. Tanim has several patents with INL, Volvo Trucks Technologies, and The Raymond Corporation. https//cet.inl.gov/SitePages/Energy%20Storage%20Technology.aspx ​ <div class="ExternalClassBD138C0D724C41DA83314EC1E9FDD156"><p>​Ph.D., Mechanical Engineering - Pennsylvania State University</p><p>M.S., Mechanical Engineering - Ohio University</p><p>B.S., Mechanical Engineering - Bangladesh University of Engineering and Technology</p></div><div class="ExternalClass5AFF28F2B0C64139BBE1F380485D405B"><p>​Electrochemical Society<br></p><br></div><div class="ExternalClass876C6F66FEFD47C2BA3DA7B5232A0CD4"><p><strong></strong></p><p><a href="https://scholar.google.com/citations?user=yYPaJrYAAAAJ&hl=en" style="font-size:16px;">Google Scholar</a>​​ </p></div>Energy Storage Technologyhttps://bios.inl.gov/BioPhotos/Tanvir Tanim.jpg<div class="ExternalClassB45C72A3493A4199A6F0B51DD6BC72ED"><p></p><p></p><p><a href="https://scholar.google.com/citations?user=yYPaJrYAAAAJ&hl=en">Google Scholar</a></p><p><a href="https://www.linkedin.com/in/tanvirrtanim/">LinkedIn</a><br></p></div>Senior Staff Scientist/Engineering and Group Lead
Lee Walkerhttps://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=155Lee Walker Lee Walker is a battery research engineering scientist at the Idaho National Laboratory. He graduated from Northern Illinois University with a bachelor’s in electrical engineering and Illinois Institute of Technology with a master’s in power engineering. He has worked at Argonne National Laboratory for the last ten years doing battery and fuel cell life and performance testing. He started there as an undergraduate coop and was able to move into a staff position by the end of his coop. He will be performing analysis of the life and performance capabilities of batteries. <div class="ExternalClass43F01D5D7100482D8EE6189A3A54AC39"><p>M.S., Power Engineering - Illinois Institute of Technology </p><p>B.S., Electrical Engineering - Northern Illinois University</p></div><div class="ExternalClass6182BCA9ABAB42F29782047CEF0E4AEE"><p>​Institute of Electrical and Electronic Engineers, IEEE<br>International Honor Society of Electrical Engineers, Eta Kappa Nu</p></div><div class="ExternalClass48319A5A26BE4FF29F38BC090A26CE03"><p>​Bloom, L. Walker, J. Basco, T. Malkow, G. De Marco, & G. Tsotridis (2010). A Comparison of Fuel Cell Testing Protocols. ECS Transactions. 30 (1), pp. 227-235.</p></div>Infrastructure and Energy Storagehttps://bios.inl.gov/BioPhotos/Lee%20Walker.jpgInfrastructure & Energy Storage Systems Group Lead
Kelly Bonjourhttps://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=819Kelly BonjourEnergy Storage Technology;Infrastructure and Energy Storage;Mobility Systems and Analyticshttps://bios.inl.gov/BioPhotos/KellyBonjour.pngAdministrative Assistant
Richard "Barney" Carlsonhttps://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=17Richard "Barney" Carlson Richard “Barney” Carlson is a research engineer with more than 20 years of automotive research experience in industry, academic and government laboratories. As a graduate student at the University of California at Davis, he led the high voltage and powertrain team in the design, development and construction of multiple plug-in hybrid electric vehicles for the FutureCar and FutureTruck challenge, his team taking first place three times. He was awarded six patents during his time at General Motors Research and Development on efficiency improvements of powertrains for automotive systems. Since arriving at INL in 2009, he has been the principal investigator for the Electric Vehicle Infrastructure (EVI) laboratory. This lab evaluates electric vehicle charging infrastructure to benchmark the state of the art technology, support codes and standards development for the automotive industry, as well as the integration of electric vehicles with renewable energy resources. He also contributes to the Department of Energy’s Advanced Vehicle Testing Activity (AVTA) through the analysis and reporting of on-road data from hybrid, plug-in hybrid, and all-electric vehicle users. As part of the AVTA, he jointly received, with other INL colleagues, the U.S DOE Vehicle Technologies Office Distinguished Achievement Award in June 2015. <div class="ExternalClassF34DE5185A0E40DAA7168ECB980B1B59"><p>​M.S., Mechanical Engineering - UC Davis</p><p>​B.S., Mechanical Engineering - UC Davis</p></div><div class="ExternalClassDED7AE4952F141CA85A3FF3A6BD3D182"><p>​Vehicle systems</p><p>Electric vehicle infrastructure laboratory</p><p>Electrified Vehicle Energy Consumption Optimization <br> Vehicle Charging Infrastructure Evaluation<br> Test Method Standardization, Optimization, and Automation<br> Automotive Tire Compound Adhesion Variability Evaluation<br> Rudimental Percussion Instruction and Performance</p></div><div class="ExternalClass1DD844A21A4A4054B964906C78485597"><p>Johnston, B.; <span style="text-decoration:underline;">Carlson, R.</span>; et. al. <em>The Continued Design and Development of the University of California, Davis FutureCar,</em> SAE 980487, 1998.</p><p> </p><p><span style="text-decoration:underline;">Carlson, R.</span>, et. al., <em>Testing and Analysis of Three Plug-in Hybrid Electric Vehicles</em>, 2007-01-0283, SAE World Congress 2007.</p><p> </p><p>Duoba, M., Lohse-Busch, H., <span style="text-decoration:underline;">Carlson, R.</span>, et. al. <em>Analysis of Power-Split HEV Control Strategies Using Data from Several Vehicles,</em> 2007-01-0291, SAE World Congress 2007.</p><p> </p><p>Rousseau, A., Shidore, N., <span style="text-decoration:underline;">Carlson, R.</span>, et. al., <em>Research on PHEV Battery Requirements and Evaluation of Early Prototypes</em>, 7<sup>th</sup> International Advanced Automotive Battery & Ultracapacitor Conference ( AABC-07), 2007.</p><p> </p><p>Bohn, T., <span style="text-decoration:underline;">Carlson, R.</span>, et. al., <em>Automotive Alternator Synchronous Rectification Via Self-Sensing Method for Improved Vehicle Fuel Consumption</em>, IAS conference, June 2007.</p><p> </p><p><span style="text-decoration:underline;">Carlson, R.</span>, et. al., <em>On-Road Evaluation of Advanced Hybrid Electric Vehicles Over a Wide Range of Ambient Temperatures</em>, Paper #275, EVS23, 2007.</p><p> </p><p>Duoba, M., <span style="text-decoration:underline;">Carlson, R.</span>, et. al., <em>TEST PROCEDURES AND BENCHMARKING Blended-Type and EV-Capable Plug-In Hybrid Electric Vehicles</em>, EVS23, 2007.</p><p> </p><p>Bohn, T., Duoba, M., <span style="text-decoration:underline;">Carlson, R.</span>, <em>In-Situ Torque Measurements in Hybrid Electric Vehicle Powertrains</em>, EVS23, 2007.</p><p> </p><p>Cao, Q., Pagerit, S., <span style="text-decoration:underline;">Carlson, R.</span>, Rousseau, A., <em>Plug-in HEV Hymotion Prius Model Validation</em>, EVS23, 2007.</p><p> </p><p>Ng, H., <span style="text-decoration:underline;">Carlson, R.</span>, et. al. <em>Comparing the Performance of GTL/ULSD Blends in Older and Newer LD Vehicles</em>, 08SFL-0268, SAE International Powertrains, Fuels and Lubricants Congress June 23-25, Shanghai, China 2008.</p><p> </p><p>Rousseau, A., Shidore, N., <span style="text-decoration:underline;">Carlson, R.</span>, et. al., <em>Impact of Battery Characteristics on PHEVs Fuel Economy</em>, 8<sup>th</sup> International Advanced Automotive Battery & Ultracapacitor Conference (AABC-08), 2008.</p><p> </p><p>Duoba, M., <span style="text-decoration:underline;">Carlson, R.</span>, et. al. <em>Test Procedure Development for "Blended Type" Plug-In Hybrid Vehicles,</em> 2008-01-0457, SAE World Congress, 2008.</p><p> </p><p style="text-align:left;">Miers, S., <span lang="DE-AT" style="text-decoration:underline;">Carlson, R.</span>,  <em>Butanol Blends used in a Common rail Diesel Engine,</em> SAE 2008 Powertrains, Fuels and Lubricants Conference, 2008.</p><p style="text-align:left;"> </p><p><span lang="DE-AT" style="text-decoration:underline;">Carlson, R.</span>, Christenson, M., et. al., <em>Influence of Sub-Freezing Conditions on Fuel Consumption and Emissions from Two Plug-In Hybrid Electric Vehicles,</em> EVS24, 2009.</p><p> </p><p><span style="text-decoration:underline;">Carlson, R</span>, Shirk, M., Geller, B.,  <em>Factors Affecting the Fuel Consumption of Plug-In Hybrid Electric Vehicles</em>.  EVS25, 2010.</p><p> </p><p><span style="text-decoration:underline;">Carlson, R</span>, D'Annunzio J, Fortin C, Shirk M.  <em>Ford Escape PHEV On-Road Results from US DOE's Technology Acceleration and Deployment Activity</em>.  EVS26 technical paper no. 2360162; 2012.</p><p> </p><p><span style="text-decoration:underline;">Carlson, R</span><span style="text-decoration:underline;">.</span>, <em>On-Road Results from Charging Infrastructure and Grid Connected Vehicle Fleets</em>, SAE Hybrid Vehicle Technologies Symposium, Anaheim, CA, INL/CON-13-28239,  February 2013.</p><p> </p><p><span style="text-decoration:underline;">Carlson, R</span><span style="text-decoration:underline;">.</span>, Lohse-Busch, H., Diez, J., Gibbs, J., <em>The Measured Impact of Vehicle Mass on Road Load Forces and Energy Consumption for a BEV, HEV, and ICE Vehicle</em>, 2013-01-1457, SAE World Congress,  2013.</p><p> </p><p>Wishart, J., <span style="text-decoration:underline;">Carlson, R.</span>, <em>The </em><em>Electric Drive Advanced Battery (EDAB)</em><em> </em><em>Project: Development and Utilization of an On-Road</em><em> </em><em>Energy Storage System Testbed</em>, 2013-01-1533, SAE World Congress, 2013.</p><p> </p><p><span style="text-decoration:underline;">Carlson, R.</span>, <em>Electric Vehicle Miles Traveled (eVMT)Analysis of On-Road Data from Plug-in Hybrid and All-Electric Vehicles</em>, presented to the California Air Resources Board, INL/MIS-14-32984, October 23, 2014.</p><p> </p><p><span lang="DE-AT" style="text-decoration:underline;">Carlson, R</span>., Normann, B.; SAE World Congress, <em>Test Results of the PLUGLESS Inductive Charging System from Evatran Group, Inc</em>., SAE 2014-01-1824, 2014. </p></div>Infrastructure and Energy Storagehttps://bios.inl.gov/BioPhotos/Barney2-800-reduced.jpg<div class="ExternalClass40AB8408A37341EA95BFC1A18FC35DC5"><p><a href="https://www.linkedin.com/in/richard-barney-carlson-374765115/" target="_blank">​LinkedIn</a></p></div>Research Engineer
Chinh Hohttps://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=22Chinh HoChinh D. Ho is a senior R&D engineer for Idaho National Laboratory’s Battery Test Center. His responsibilities include battery performance testing for several large and critical programs. He is in charge of test setup, cell fixture design, calibration, programming and data monitoring and integrating unique methods and hardware into testing operations. He has provided support on key publications, reports and presentations. He earned his master’s in electrical engineering at University of Idaho, receiving a 4.0 GPA while working full-time. He has co-authored more than 10 peer-reviewed journal publications.<div class="ExternalClass21F7D50360EF46BB8747AA1D64554D0F"><p>​M.E., Electrical Engineering - University of Idaho</p><p>B.S., Engineering - Idaho State University</p></div>Infrastructure and Energy Storagehttps://bios.inl.gov/BioPhotos/Chinh2-800.jpgSenior Research and Development Engineer
Michael Evanshttps://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=20Michael EvansMichael C. Evans is a senior laboratory lead test engineer at Idaho National Laboratory’s Energy Storage and Transportation Systems department. He has 28 years of experience working with NNSA, Departments of Defense, Homeland Security, Transportation Security Administration, Federal Aviation Administration and the Intelligence Community. He holds a degree from Eastern Idaho Technical College and was most recently taking classes from the University of Idaho. He has co-authored numerous report titles for different government agencies on portal trace testing and evaluation. He has taught electronic, LAN, security, explosives and fiber optic classes to several agencies around the globe. He attended Technical Surveillance Countermeasures Executive Manager’s training at the Defense Department’s Interagency Training Center in Fort Washington, MD and further manager's training at Camp Peary. He hosted, spoke and championed bringing the Interagency Advanced Power Group Workshop to Idaho National Laboratory (INL) so we can showcase our core capabilities. He was asked to speak and present at national and international battery conferences in 2015. He received an outstanding excellence in safety leadership from the INL Associate Laboratory Director. Since 2012 he has been laboratory lead, principal researcher and laboratory space coordinator, providing leadership, guidance, oversight and direction to staff.<div class="ExternalClass150952BA0C4C4B6FB5283E315BA5E919"><p>​A.A.S., Electronics - Eastern Idaho Technical College</p></div>Infrastructure and Energy Storagehttps://bios.inl.gov/BioPhotos/Mike1-800-cropped.jpgLab Operations Lead - Energy Storage
Charles Dickersonhttps://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=153Charles Dickerson Charles Dickerson joined the Energy Storage and Transportation Systems Department in May 2015 as a Battery Test Engineer. He recently graduated from Idaho State University with a bachelor’s degree complementing his Associates Degree in Laser-Optics and Electronics. He has more than ten years of work experience in research and development, working for Sandia National Labs (Z-Accelerator), Positron Systems (Non-Destructive Testing) and Idatech (Hydrogen Fuel Cells). His work interests include alternative and green energies, mechanical, electrical, laser, and material properties. When not working Charles enjoys doing anything that involves the outdoors with biking and skiing at the top of the list. <div class="ExternalClass5EE35B8CB21C45B3AFD35911377991E0"><p>​B.A.S., Applied Science - Idaho State University</p><p>A.A.S., Electronics and Laser Optics - Idaho State University</p></div>Infrastructure and Energy Storagehttps://bios.inl.gov/BioPhotos/Chuck-800.jpgBattery Test Engineer
Kevin Gering, Ph.D.https://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=161Kevin Gering, Ph.D.Kevin has been involved in battery testing and R&D for nearly 20 years while at INL. Dr. Gering is an established expert in the field of state-of-the-art molecular-based electrolyte models for electrochemical systems (AEM), and has developed novel performance and lifecycle (aging) models for lithium-ion systems covering mechanistic aspects of kinetic limitations and performance loss over battery life (CellSage). AEM generates more than 80 property metrics with each simulation, giving genomic-level information for electrolyte characterization. Kevin is well qualified to speak on issues of electrolyte transport, characterization, screening, and optimization for lithium-ion systems, wherein particular areas of expertise are highly concentrated electrolytes and low-temperature battery performance. During AEM development Kevin has achieved milestones in formulating mathematics and new modeling techniques that capture properties that were previously very difficult to model over wide ranges of temperature and salt concentration, such as colligative permittivity, conductivity, diffusivity, viscosity, surface tension, ion desolvation energy and kinetics, double-layer composition and properties, comprehensive ion speciation, osmotic pressure, preferential ion solvation, and many others. Dr. Gering has a diverse background in modeling complex systems, where other previous work covered developing a methane hydrates marine basin model, a dynamic passive aeration compost model, blast wave calculations, transport model for pulsed reactors, and others. He actively collaborates with other DOE labs, universities, and the private sector, and is an advocate of domestic intellectual property, having a number of patents issued and pending, with some currently under license.<div class="ExternalClassAB362A32EF484EC0AC4C585CA2AE2328"><p>Ph.D., Chemical Engineering - University of Oklahoma</p><p>M.S., Chemical Engineering - University of Oklahoma</p><p>B.S., Chemistry - Southern Nazarene University</p></div>P. O. Box 1625 Idaho Falls, ID 83415-3732<div class="ExternalClassE36A2299EBB04B51A0637B50C041254F"><p>​Electrochemical Society</p></div><div class="ExternalClass7C63ADBB9E1F4F248C8DF72DFD8E3818"><div>M.K. Harrup, H.W. Rollins, D.K. Jamison, E.J. Dufek, K.L. Gering, T.A. Luther, “Unsaturated Phosphazenes as Co-Solvents for Lithium-Ion Battery Electrolytes”, accepted to J. Power Sources.</div><div><br> </div><div>E.J. Dufek, M.L. Stone, D.K. Jamison, F.F. Stewart, K.L. Gering, L.M. Petkovic, A.D. Wilson, M.K. Harrup, H.W. Rollins, “Hybrid phosphazene anodes for energy storage applications,” J. Power Sources, 267,  (2014)  347-355.</div><div><br> </div><div>H.W. Rollins, M.K. Harrup, E.J. Dufek, D.K. Jamison, S.V. Sazhin, K.L. Gering, D.L. Daubaras, “Fluorinated phosphazene co-solvents for improved thermal and safety performance in lithium-ion battery electrolytes”, J. Power Sources 263 (2014) 66-74.</div><div><br> </div><div>S.V. Sazhin, K.L. Gering, M.K. Harrup, H.W. Rollins, “Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases”, J. Electrochem. Soc., 161 issue 3 (2014) A393-A402.</div><div><br> </div><div>M.​T. Benson, M.K. Harrup, K.L. Gering, “Lithium binding in fluorinated cyclic triphosphazenes”, Computational and Theoretical Chemistry 1005 (2013) 25–34.</div><div><br> </div><div>M. Dubarry, C. Truchot, B.Y. Liaw, K.L. Gering, S.V. Sazhin, D.K.  Jamison, C.J. Michelbacher, “Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part III. Effect of thermal excursions without prolonged thermal aging,” J. Electrochem. Soc. 160 (2013) A191-A199.</div><div><br> </div><div>K.L. Gering, S.V. Sazhin, D.K. Jamison, C.J. Michelbacher, B.Y. Liaw, M. Dubarry, M. Cugnet, “Investigation of path dependence in commercial lithium-ion cells chosen for plug-in hybrid vehicle duty cycle protocols,” J. Power Sources 196 (2011) 3395. </div><div><br> </div><div>M. Dubarry, C. Truchot, B.Y. Liaw, K.L. Gering, S.V. Sazhin, D.K. Jamison, C.J. Michelbacher, “Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle (PHEV) applications. Part II. Degradation mechanism under 2C cycle aging,” J. Power Sources, 196 (2011) 10336.</div><div><br> </div><div>M. Dubarry, C. Truchot, M. Cugnet, B.Y. Liaw, K.L. Gering, S.V. Sazhin, D.K. Jamison, C. J. Michelbacher, “Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle (PHEV) applications. Part I. Initial characterizations,” J. Power Sources, 196 (2011) 10328. </div><div><br> </div><div>S.V. Sazhin, M.K. Harrup, and K.L. Gering, "Characterization of Low-Flammability Electrolytes for Lithium-ion Batteries", J. Power Sources, 196 (2011) 3433.</div><div><br> </div><div>M. K. Harrup, K. L. Gering, H. W. Rollins, S. V. Sazhin, M. T. Benson, D. K. Jamison, C. J. Michelbacher, T. A. Luther , “Phosphazene Based Additives for Improvement of Safety and Battery Lifetimes in Lithium-Ion Batteries”, ECS Transactions from the 220th Meeting of the Electrochemical Society (Oct. 2011, Boston, MA). </div><div><br> </div><div>G. S. Yeduvaka, R. M. Spotnitz, and K. L. Gering, “Macrohomogenous Modeling of Commercial, Primary Li/MnO2 Coin Cells”, ECS Transactions, Vol. 19 (16) pp 1-10 (2009).</div><div><br> </div><div>K. L. Gering, "Improved Transport Modeling of Electrolyte Systems in Li-ion Cells by Direct Consideration of Solvent-ion Interactions and Accurate Local Properties", Proceedings of the 43rd Power Sources Conference (Philadelphia, PA), 153-156 (2008).</div><div><br> </div><div>K. L. Gering, “Prediction of electrolyte viscosity for aqueous and non-aqueous systems: Results from a molecular model based on ion solvation and a chemical physics framework”, Electrochim. Acta, Vol. 51, 3125–3138 (2006). </div><div><br> </div><div>K. L. Gering, “Low-temperature Performance Limitations of Lithium-ion Batteries”, ECS Transactions, Vol. 1 (26), 119 (2006).</div><div><br> </div><div>D. P. Abraham, E. M. Reynolds, P. L. Schultz, A. N. Jansen, and D. W. Dees, “Temperature Dependence of Capacity and Impedance Data from Fresh and Aged High-Power Lithium-Ion Cells”, Journal of The Electrochemical Society, Vol. 153, No. 8, A1610-A1616 (2006).  Contribution from K. L. Gering acknowledged.</div><div><br> </div><div>I. Bloom, J. P. Christophersen, D. P. Abraham, and K. L. Gering, “Differential voltage analyses of high-power lithium-ion cells  3. Another anode phenomenon”, Journal of Power Sources, Vol. 157, pp 537–542 (2006).</div><div><br> </div><div>I. Bloom, B. G. Potter, C. S. Johnson, K. L. Gering, and J. P. Christophersen, “Effect of cathode composition on impedance rise in high-power lithium-ion cells: Long-term aging results”, Journal of Power Sources, Vol. 155, pp 415–419 (2006).</div><div><br> </div><div>I. Bloom, J. Christophersen, and K. Gering, “Differential voltage analyses of high-power lithium-ion cells  2. Applications”, Journal of Power Sources, Vol. 139, pp 304–313 (2005).</div><div><br> </div><div>J. P. Christophersen, K. L. Gering, C. G. Motloch, C. D. Ho, V. S. Battaglia, T. Q. Duong, and D. Howell, “Effects of Reference Performance Testing During Life-Cycle Aging of Lithium-Ion Cells," Proceedings of the 205th Meeting of the Electrochemical Society, San Antonio, TX (May 10-13, 2004).</div><div><br> </div><div>K. L. Gering and T. Q. Duong, “Prediction of electrolyte transport properties using a solvation-based chemical physics model”, in: K. Striebel (Ed.), Lithium/Lithium Ion Batteries, The Electrochemical Society Proceeding Series, Pennington, NJ (2003).</div><div><br> </div><div>T. Murphy, C. Motloch, J. Christophersen, R. Wright, K. Gering, C. Ho, I. Bloom, S. Jones, G. Henriksen, V. Battaglia, T. Duong, and J. Barnes, "Overview of Performance Testing of the Advanced Technology Development Program Gen 2 Cells", Proceedings of the 204th Meeting of the Electrochemical Society, Orlando, FL, (October, 2003).</div><div><br> </div><div>J. P. Christophersen, K. L. Gering, C. G. Motloch, R. B. Wright, C. D. Ho, I. D. Bloom, S. A. Jones, V. S. Battaglia, and T. Q. Duong, “Performance Evaluation of the Advanced Technology Development Program Gen 2 Cells”, Proceedings of the 204th Meeting of the Electrochemical Society (2003).</div><div><br> </div><div>K. L. Gering, “Simulations of methane hydrate phenomena over geologic timescales. Part I: Effect of sediment compaction rates on methane hydrate and free gas accumulations”, Earth and Planetary Science Letters, Vol. 206, pp 65-81 (2003).</div><div><br> </div><div>K. L. Gering and J. J. Rosentreter, “Real-Time Measurement of Aqueous Cyanide in Mining Operations”, in Cyanide: Social, Industrial, and Economic Aspects (Courtney Young, Larry Twidwell, and Corby Anderson, editors), a collection of papers from the 2001 TMS Annual Meeting in New Orleans, Louisiana, February 11-15, 2001. The Minerals, Metals & Materials Society. ISBN: 0-87339-479-8  [pp. 141-150].</div><div><br> </div><div>K. L. Gering, R. S. Cherry, and D. M. Weinberg, “Mechanisms for Methane Gas Accumulation Under Hydrate Deposits in Sediments”, Annals of the New York Academy of Science, Vol. 912, Issue 0, pp 623-632 (2000).</div><div><br> </div><div>K. L. Gering, “Developing a Dependable Approach for Evaluating Waste Treatment Data”, published in the proceedings of Waste Management ‘98, Tucson, AZ (March 2-6, 1998).</div><div><br> </div><div>K. L. Gering, “Using an Effectiveness Factor as a Decision-Making Tool for Mixed Waste Solidification/Stabilization”,  Technology: Journal of the Franklin Institute, Vol 334A, No. 1, and the proceedings of the Fourth Biennial Mixed Waste Symposium, Baltimore, MD (August 18-21, 1997). </div><div><br> </div><div>N. J. Lynch, K. L. Gering, and R. S. Cherry, “Composting as a Reactor Design Problem”, Annals of the New York Academy of Sciences, Vol. 829, pp 290-301 (1997).</div><div><br> </div><div>K. L. Gering and G. L. Schwendiman, “Results from Five Years of Treatability Studies Using Hydraulic Binders to Stabilize Low-Level Mixed Waste at the INEL”, published in the proceedings of Waste Management ‘97, Tucson, AZ (March 2-6, 1997).</div><div><br> </div><div>K. L. Gering and G. L. Schwendiman, “Photo-Oxidation of Organic Compounds in Liquid Low-Level Mixed Wastes at the INEL”, published in the proceedings of SPECTRUM ‘96: International Topical Meeting on Nuclear and Hazardous Waste Management, Seattle, WA (August 18-23, 1996).</div><div><br> </div><div>K. L. Gering and G. L. Schwendiman, “UV-Enhanced Oxidation of Organic Compounds in Aqueous Low-Level Mixed Wastes at the INEL”, published in the proceedings of the Third Biennial Mixed Waste Symposium, Baltimore, MD (August 7-10, 1995). </div><div><br> </div><div>K. L. Gering and G. L. Schwendiman, “Summary Results from Three Years of Solidification Treatability Studies of Low-Level Mixed Waste at the INEL”, published in the proceedings of the Third Biennial Mixed Waste Symposium, Baltimore, MD (August 7-10, 1995).</div><div><br> </div><div>K. L. Gering, “Solidification Results from a Treatability Study of Nonincinerable Low-Level Mixed Wastes”, published in the proceedings of the Second International Mixed Waste Symposium, Baltimore, MD (August 16-20, 1993).</div><div><br> </div><div>K. L. Gering, A Molecular Approach to Electrolyte Solutions: Predicting Phase Behavior and Thermodynamic Properties of Single and Binary-Solvent Systems, Doctoral Dissertation, University of Oklahoma (1989).</div><div><br> </div><div>K. L. Gering and L. L. Lee, “Prediction of Vapor-Liquid Equilibria of Binary-Solvent Electrolytes”, Fluid Phase Equilibria, Vol. 53, p 199 (1989). </div><div><br> </div><div>K. L. Gering, L. L. Lee, J. L. Savidge, and L. H. Landis, “A Molecular Approach to Electrolyte Solutions: Phase Behavior and Activity Coefficients for Mixed-Salt and Multisolvent Systems”, Fluid Phase Equilibria, Vol. 48, p 111 (1989). </div><div><br> </div><div>K. L. Gering and J. F. Scamehorn, “Use of Electrodialysis to Remove Heavy Metals from Water”, Separation Science and Technology, Vol. 23, No. 14 & 15, p 2231 (1988).</div><div><br> </div><div>K. L. Gering, Use of Electrodialysis to Remove Heavy Metals from Water, Masters Thesis, University of Oklahoma (1987).</div><div><br> </div><div>G. Heasley, J. Sheehy, C. Codding, and K. Gering, “Chlorination of 1-hexyne and 3-hexyne in Acetic Acid and Methanol”, Journal of Organic Chemistry, Vol. 50, No. 10, p 1773 (1985).</div></div>Energy Storage Technologyhttps://bios.inl.gov/BioPhotos/Kevin%20Gering.pngAdvisory Scientist
Randy Bewleyhttps://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=13Randy Bewley Randy L. Bewley is a battery test engineer at Idaho National Laboratory’s Battery Test Center, providing performance science evaluation of advanced prototype lithium polymer batteries for the United States Advanced Battery Consortium and other projects. He holds an associate of applied science degree in electronics from Idaho State University. Most recently he has served as lab space coordinator for the Systems Integration Lab and principal researcher and lab space coordinator for the Battery Test Center. He holds one patent developed at INL for the Feedback Enhanced Plasma Spray Tool. <div class="ExternalClass32EB62BFF1F94FD09A7C89E9B4BB5B05"><p>​A.A.S., Electronics - Idaho State University</p></div>Power and Energy Systems;Hydrogen and Fuel Cells;Infrastructure and Energy Storagehttps://bios.inl.gov/BioPhotos/Randy4-800.jpgLab Space Coordinator
Matt Shirkhttps://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=37Matt ShirkMatthew Shirk is a research engineer at the Idaho National Laboratory and a principal investigator of high-power battery electrochemical characterization and performance testing. He has collected and analyzed advanced vehicle, sub-system and infrastructure test data to create fact sheets and reports; prepared custom analyses for data customers; directed and supported experiment design, data logging installation and programming; and presented research findings at meetings and international conferences. He holds bachelor’s and master’s degrees in mechanical engineering from Pennsylvania State University. <div class="ExternalClass7BB0296B05524433A4ED76038B205F18"><p>​M.S., Mechanical Engineering - Pennsylvania State University</p><p>​B.S., Mechanical Engineering - Pennsylvania State University</p></div>Infrastructure and Energy Storagehttps://bios.inl.gov/BioPhotos/Matt3-800.jpgResearch Engineer
Sergiy Sazhin, Ph.D.https://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=35Sergiy Sazhin, Ph.D.Dr. Sergiy V. Sazhin is a principal research scientist and engineer at the Idaho National Laboratory (INL). He has extensive academia and industrial experience in electrochemical power sources with prominent organizations throughout the world as a scientist, technologist, and project manager. He started his career at the Ukrainian Academy of Sciences leading projects on a large variety of battery systems and on fundamental studies. While working for Samsung Corp., South Korea, he launched R&D on new electrolytes, electrolyte purification techniques, and electrode development for industrial lithium-ion battery design. Dr. Sazhin then emigrated to the U.S.A. At Moltech Corp., he managed an electroanalysis team that worked on development of lithium-sulfur battery electrolytes and on accelerated tests. At Rayovac Corp., he led projects on lithium-carbon monofluoride batteries and on lithium-ion batteries. Now, at INL (since 2007), he provides synergy between his academia and industrial knowledge for the Energy Storage and Advanced Vehicle department programs. He is the principal investigator on diagnostic and prognostic testing of advanced batteries for electric vehicles and new methods of electrochemical characterization of battery components. His work has resulted in 46 patents/invention publications, 90 paper and conference publications, and several awards including national recognition. He has contributed to a number of battery technologies, molten salt systems, and active material coatings. Dr. Sazhin has also developed new testing methods for advanced battery materials and battery characterization, including a new approach for battery health estimation that improves safety and helps prevent catastrophic failure events.<div class="ExternalClass88E77DC960424FBB9BF38C983542665C"><p>Ph.D., Electrochemical Technology - National Technical University of Ukraine , Kyiv Polytechnic Institute</p><p>M.S./B.S., Electrochemical Technology - National Technical University of Ukraine, Kyiv Polytechnic Institute</p></div><div class="ExternalClass8A542E7AD42A4C33BC85E11E47602E80"><p>Advanced materials for the batteries</p><p>Diagnostic and prognostic analysis of battery performance</p><p>Electrochemistry of non-aqueous systems</p><p>Technology of battery production</p><p>New battery materials and their electrochemical characterization </p><p>New methods for battery testing and characterization</p><p>Safety of advanced battery systems</p></div><div class="ExternalClassE0DB2446D163407E92BB9D069A3D3D75"><p>​The Electrochemical Society</p></div><div class="ExternalClassE74CAD9E1C5544698B00EEC4BFF70351"><p><strong>Selected Publications</strong></p><p>S. V. Sazhin, E. J. Dufek, D. K. Jamison. Novel Short-Circuit Detection in Li-ion Battery Architectures. - ECS Transactions, 2017, v. 80 (10), p. 75-84. DOI: 10.1149/08010.0075ecst.</p><p> </p><p>S. V. Sazhin, E. J. Dufek, K. L. Gering. Enhancing Li-ion Battery Safety by Early Detection of Nascent Internal Shorts. - J. Electrochem. Soc., 2017, v. 164 (1), p. A6281-A6287. DOI: 10.1149/2.0431701jes.</p><p> </p><p>S. V. Sazhin, E. J. Dufek, K. L. Gering. Enhancing Li-ion Battery Safety by Early Detection of Nascent Internal Shorts. - ECS Transactions, 2016, v. 73 (1), p.  161-178. DOI:10.1149/07301.0161ecst</p><p> </p><p>S.V. Sazhin, K.L. Gering, M.K. Harrup, H.W.  Rollins. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes and Solid Electrolyte Interphases. - J. Electrochem. Soc., 2014, v. 161, issue 3, p. A393-A402.  DOI:10.1149/2.043403jes.</p><p> </p><p>S.V. Sazhin, M.K. Harrup, K.L. Gering. Characterization of low-flammability electrolytes for lithium-ion batteries". –J. Power Sources, 2011, v. 196, issue 7, p. 3433-3438.  DOI:10.1016/j.jpowsour.2010.09.019.</p><p> </p><p>S.V. Sazhin, M. Y. Khimchenko, Y. N. Tritenichenko and H.S.  Lim. Performance of Li-ion cells with new electrolytes conceived for low temperature applications. - J. Power Sources, 2000, v. 87/1-2, p. 112-117.  DOI:10.1016/S0378-7753(99)00434-6.</p><p> </p><p>S.V. Sazhin, M.Y. Khimchenko, Y.N. Tritenichenko, W. Roh, H.Y. Kang.  Lithium state diagram as a description of lithium deposit morphology. - J. Power Sources, 1997, v. 66, p. 141-145.  DOI:10.1016/S0378-7753(96)02542-6.</p><p> </p><p>S.V. Sazhin S, A.V. Gorodyskii, M.Y. Khimchenko.  Lithium rechargeability on different substrates. - J. Power Sources, 1994, v. 47, p. 57-62.  DOI:10.1016/0378-7753(94)80050-2.</p><p> </p><p>S.V. Sazhin, A.V. Gorodyskii, M.Y. Khimchenko, S.P. Kuksenko, V.V. Danilin.  New parameters for lithium cyclability in organic electrolytes for secondary batteries. - J. Electroanal. Chem., 1993, v. 344, p. 61-72. DOI:10.1016/0022-0728(93)80046-K.</p><p> </p><p>A.V. Gorodyskii, S.V. Sazhin, V.V. Danilin, S.P. Kuksenko.  Effect of sodium cation on lithium corrosion in aprotic media. - J. Power Sources, 1989, v.28, p. 335-343. DOI:10.1016/0378-7753(89)80063-1.</p><p> </p><p>K.L. Gering, S.V. Sazhin, D.K. Jamison, C.J. Michelbacher, B. Y. Liaw, M. Dubarry, and M. Cugnet.  Investigation of Path Dependence in Commercial Li-ion Cells Chosen for PHEV Duty Cycle Protocols. –J. Power Sources, 2011, v. 196, issue 7, p. 3395-3403.  DOI:10.1016/j.jpowsour.2010.05.058.</p><p> </p><p>M. Dubarry, C. Truchot, B.Y. Liaw, K.L. Gering, S.V. Sazhin, D.K. Jamison, C.J. Michelbacher.  Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations. - J. Power Sources, 2011, v. 196, issue 23, p. 10328-10335. DOI:10.1016/j.jpowsour.2011.08.077.</p><p> </p><p>M. Dubarry, C. Truchot, B.Y. Liaw, K.L. Gering, S.V. Sazhin, D.K. Jamison, C.J. Michelbacher.  Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part II: Degradation mechanism under 2 C cycle aging. - J. Power Sources, 2011, v. 196, issue 23, p. 10336-10343.  DOI:10.1016/j.jpowsour.2011.08.078.</p><p> </p><p>M. Dubarry, C. Truchot, B.Y. Liaw, K.L. Gering, S.V. Sazhin, D.K. Jamison, C.J. Michelbacher.  Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part III: Effect of thermal excursions without prolonged thermal aging batteries and energy storage. - J. Electrochem. Soc., 2013, v.160 (1), p. A191-A199. DOI: 10.1149/2.063301jes. </p><p> </p><p>M. Dubarry, C. Truchot, A. Devie, B. Y. Liaw, K. Gering, S. Sazhin, D. Jamison, and C. Michelbacher. Evaluation of Commercial Lithium-Ion Cells Based on Composite Positive Electrode for Plug-In Hybrid Electric Vehicle (PHEV) Applications. IV. Over-Discharge Phenomena.-J. Electrochem. Soc., 2015, v.162 (9), p. A1787-A1792.  DOI:10.1149/2.0481509jes.</p><p> </p><p>H.W. Rollins, M.K. Harrup, E.J. Dufek, D.K. Jamison, S.V. Sazhin, K.L. Gering, D.L. Daubaras.  Fluorinated phosphazene co-solvents for improved thermal and safety performance in lithium-ion battery electrolytes. - J. Power Sources, 2014, v. 263, p. 66–74.  DOI:10.1016/j.jpowsour.2014.04.015.</p></div>Energy Storage Technologyhttps://bios.inl.gov/BioPhotos/SergiySazhin-800.jpg<div class="ExternalClassD695769CF12C4AC0809F702539E898B2"><p>​<a href="https://www.linkedin.com/in/sergiy-sazhin-a0125b64">LinkedIn</a></p><p><a href="https://www.researchgate.net/profile/Sergiy_Sazhin">ResearchGate</a></p><p><a href="https://scholar.google.com/citations?user=VcT29NMAAAAJ&hl=en">Google Scholar</a></p></div>Research and Development Scientist/Engineer
Yulun Zhang, Ph.D.https://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=786Yulun Zhang, Ph.D.Dr. Yulun Zhang is an Analytical Chemist and Postdoctoral Researcher in Idaho National Laboratory’s Energy Storage & Advanced Vehicles Department. His research specialties include electrochemical characterization and battery development. Since joining INL in 2019, his research includes 1) development of battery materials for DOE’s Battery500 project, 2) artificial intelligence and machine learning (AI-ML)-based analytics for battery diagnostics and prognostics. He received his bachelor’s in chemistry from Xiamen University and his doctorate in Analytical Chemistry (Electrochemistry) from the University of Utah. He presented solutions to unsolved electrochemical challenges at the Next Generation Electrochemistry Meeting, held in Chicago in June 2017. In free time, He enjoys outdoor activities such as hiking, skiing and table tennis.<div class="ExternalClass17C701E719A04743B042FE9520A2D17C"><p>​Ph.D., Analytical (Electrochemistry) Chemistry, University of Utah</p><p>B.S., Chemistry, Xiamen University</p></div><div class="ExternalClass26D948877C5F4C88ADB45674647E615F"><p>​Y Zhang, K McKelvey, MA Edwards, JE Dick, AJ Bard, HS White, “Simultaneous size and electrocatalytic activity measurements of single Pt nanoparticles,” in preparation. </p><p><br>Y Zhang, DA Robinson, MA Edwards, K McKelvey, HS White, “Electrocatalytic Oxygen Reduction Reaction at Single sub-3 nm Pt Nanoparticles,” to be submitted.</p><p><br>Y Yu, V Sundaresan, S Bandyopadhyay, Y Zhang, MA Edwards, K McKelvey, HS White, KAWillets, “Three-dimensional super-resolution imaging of single nanoparticles delivered by pipettes,” ACS Nano, 2017, 11 (10), pp 10529–10538.</p><p><br>K McKelvey, SR German, Y Zhang, HS White, MA Edwards, “Nanopipettes as a Tool for Single Nanoparticle Electrochemistry,” Curr. Opin. Electrochem., 2017, 6, pp 4–9.</p><p><br>I Boussouar, Q Chen, X Chen, Y Zhang, F Zhang, D Tian, HS White, H Li, “Single Nanochannel Platform for Detecting Chiral Drugs,” Anal. Chem., 2017, 89 (2), pp 1110–1116. </p><p><br>Y Zhang, MA Edwards, SR German, HS White, “Multipass Resistive-Pulse Observations of the Rotational Tumbling of Individual Nanorods,” J. Phys. Chem. C, 2016, 120 (37), pp 20781–20788.</p></div>Energy Storage Technologyhttps://bios.inl.gov/BioPhotos/Zhang_P-10196-1.JPGAnalytical Chemist and Postdoctoral Researcher
Ningshengjie Gao, Ph.D.https://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=774Ningshengjie Gao, Ph.D.Dr. Ningshengjie (Ning) Gao is a postdoctoral research associate in Energy Storage Technology group at Idaho National Laboratory, investigating energy storage and conversion using electrochemical systems. Her research at INL includes Li-ion and Li metal battery testing, battery failure mechanism, and electrochemical CO2 reduction. In addition, she has solid background in bioenergy production from various waste streams and wastewater treatment by applying microbial electrochemical systems (MES). She holds a doctorate in biological and ecological engineering from Oregon State University and a bachelor’s in environmental science from Nankai University in China. She was involved in CO2 reduction project as an INL graduate intern in 2017. She has given presentations to the Battery500 Consortium, the International Society for Microbial Electrochemistry and Technology, and the World Engineers’ Summit. She routinely serves as a peer reviewer for journals in research community such as Intl Journal of Hydrogen Energy and Bioelectrochemistry.<div class="ExternalClass4E9828CDA8B946E7ADF650F725798E03"><p>​Ph.D., Biological and Ecological Engineering, Oregon State University</p><p>B.S., Environmental Science, Nankai University</p></div><div class="ExternalClass3B42A3E77B894C868F2327C6D12D8901"><p>​​Energy storage and conversion, electrochemical process, water treatment.</p></div><div class="ExternalClass3A41AFCBADE5459BB335499A474686D5"><p><strong>Book Chapter</strong>:</p><p>Gao N, Lesnik K, Bermek H and Liu H*. Chapter 8 Microbial Fuel Cell: From Fundamentals to Wastewater Treatment. Anaerobic Biotechnology: Environmental Protection and Resource Recovery. World Scientific. 2015, 163-189.<br></p><p><strong>Academic Journal Papers:</strong></p><p><span aria-hidden="true"></span> </p><p>Gao N, Fan Y, Wang L, Long F, Deng D, Liu H*. Accelerated Tests for Evaluating the Air-cathode Aging in Microbial Fuel Cells. Bioresource Technology 297, 122479.</p><p> </p><p>Gao N, Fan Y, Long F, Qiu Y, Geier W, Liu H*. Novel Trickling Microbial Fuel Cells for Electricity Generation from Wastewater. Chemosphere, 126058.</p><p> </p><p>Diaz L*, Gao N, Adhikari B, Lister T, Dufek E, Wilson A. Electrochemical Production of Syngas from CO2 Captured in Switchable Polarity Solvents. Green Chemistry 20 (3), 620-626.</p><p> </p><p>Gao N, Qu B, Xing Z, and Liu H*. Novel Current Collector-Free Polyethylene Sheet Air-Cathode for Microbial Fuel Cells. Energy 155, 763-771.</p><p> </p><p>Xing Z, Gao N, Qi Y, Ji X*, and Liu H*. (equal first author) Influence of Enhanced Carbon Crystallinity of Nanoporous Graphite on the Cathode Performance of Microbial Fuel Cells. Carbon 115, 271-278.</p><p> </p><p>Wang X, Gao N, Zhou Q*, Dong H, Yu H and Feng Y*. Acidic and Alkaline Pretreatments of Activated Carbon and Their Effects on the Performance of Air-cathodes in Microbial Fuel Cells. Bioresource Technology 144, 632-636.</p><p> </p><p>Diaz L*, Gao N, Adhikari B, Lister T, Dufek E, Wilson A. Electrochemical Production of Syngas from CO2 Captured in Switchable Polarity Solvents. Green Chemistry. 2018, 10.1039/c7gc03069j.</p><p><br>Xing Z, Gao N, Qi Y, Ji X*, and Liu H*. (equal first author) Influence of Enhanced Carbon Crystallinity of Nanoporous Graphite on the Cathode Performance of Microbial Fuel Cells. Carbon. 2017, 10.1016/j.carbon.2017.01.014.</p><p><br>Gao N, Qu B, Xing Z, and Liu H*. Novel Current Collector-Free Polyethylene Sheet Air-Cathode for Microbial Fuel Cells. Energy. 2017, submitted.</p><p><br>Wang L, Xie B, Gao N, Min B, and Liu H*. Urea Removal Coupled with Enhanced Electricity Generation in Single-Chambered Microbial Fuel Cells. Environ. Sci. Pollut. Res. 2017. 10.1007/s11356-017-9689-7.</p><p><br>Janicek A, Gao N, Fan Y and Liu H*. High Performance Activated Carbon/Carbon Cloth Cathodes for Microbial Fuel Cells. Fuel Cells, 2015, 10.1002/fuce.201500120.<br></p><p>Wang X, Gao N, Zhou Q*, Dong H, Yu H and Feng Y*. Acidic and Alkaline Pretreatments of Activated Carbon and Their Effects on the Performance of Air-cathodes in Microbial Fuel Cells. Bioresour. Technol, 2013, 144: 632-636.</p></div>Energy Storage Technologyhttps://bios.inl.gov/BioPhotos/Ningshengjie%20Gao.jpg<div class="ExternalClass80368FF7E39E40A2AD7F96C88D292044"><p>​<a href="https://scholar.google.com/citations?hl=en&user=NwmHQS4AAAAJ&view_op=list_works&sortby=pubdate">Google Scholar</a></p></div>Postdoctoral Researcher
Dr. John (Jack) Deppehttps://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=755Dr. John (Jack) DeppeDr. Jack Deppe is a battery relationship manager in Idaho National Laboratory's Energy Storage Group. Before joining INL in 2018 he was an energy storage consultant for more than 25 years, conducting applied and basic research on Li ion batteries for electric and hybrid electric vehicles for the U.S. Department of Energy Vehicle Technologies Office. He holds a bachelor's in physics from Drexel University and earned his master's and doctorate in physics at University of California Irvine. Deppe also serves on the Energy Storage Council of USDRIVE and the tech team of the United States Advanced Battery Consortium (USABC-TAC) where he represents VTO. In these capacities he reviews proposals, provides technical guidance to battery developers and research staff, and oversees battery R&D and development contracts in support of the DOE VTO’s mission. He has consulted with several small materials and battery companies, helping them to improve their technologies, and with venture capital firms whom he helps evaluate promising technologies.<div class="ExternalClass294D2195D56E4E8FA9E94480761727BB"><p>​Ph.D. Physics - University of California<br>M.S. Physics - University of California<br>B.S. Physics (Honors) - Drexel University</p></div><div class="ExternalClass05E22257523F48BB9E9B32D6C17D39B6"><p>​Materials Research Society (MRS), 2003-present <br>Electrochemical Society (ECS), 2001-present<br>American Associated for the Advancement of Science (AAAS), 2008-present</p></div>Energy Storage Technology;Infrastructure and Energy Storagehttps://bios.inl.gov/BioPhotos/Jack%20Deppe%20headshot%202018.jpgBattery Relationship Manager with Idaho National Laboratory
Sangwook Kim, Ph.D.https://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=823Sangwook Kim, Ph.D.Sangwook Kim is a Postdoctoral Research Associate in the Energy Storage & Advanced Vehicles department at Idaho National Laboratory. Rojan earned his doctorate in electrical engineering from University of North Carolina Charlotte and holds a bachelor’s degree in electrical engineering from Pulchowk Campus, Tribhuvan University, Nepal. During his Ph.D. program, he was awarded a 2018 INL graduate fellowship. His research interest includes mechanical stresses and battery degradation in Li-ion/Li metal batteries. At INL, he involves in machine learning project and XCEL (eXtreme Fast Charge Cell Evaluation) to identify the battery aging modes under fast-charging conditions. In his free time, Sangwook enjoys outdoor activities, such as biking, hiking, and camping in beautiful Idaho nature.<div class="ExternalClass742531F26C2D41DFA79680A89F148C7C"><p>Ph.D., Mechanical Engineering – North Carolina State University.<br></p><p><br></p><p>M.S., Mechanical Engineering – North Carolina State University.<br></p><p><br></p><p>B.S., Mechanical Engineering – Pusan National University.<br></p></div><div class="ExternalClass9561C16068394E64BD9C5406CF8DCC30"><p>S. Kim, A. Raj, B. Li, E. -J. Dufek, C. –C. Dickerson, H.-Y. Huang, B. Liaw, G. Pawar, “Correlation of electrochemical and mechanical responses: Differential analysis of rechargeable lithium metal cells,” Journal of Power Sources, 463, 228180, 2020.<br></p><p><br></p><p>A. Raj, C. -C. Dickerson, S. -C. Nagpure, S. Kim, C. Niu, J. Xiao, B. Liaw, E. –J. Dufek, “Communication—Pressure Evolution in Constrained Rechargeable Lithium-metal Pouch Cells,” Journal of The Electrochemical Society, 167 (2), 2020.<br></p><p><br></p><p>S. Kim, H. Chen, and H.-Y. Huang, “Coupled Mechanical and Electrochemical Analyses of 3D Reconstructed LiFePO4 by FIB/SEM in Lithium-Ion Batteries.” ASME Journal of Electrochemical Energy Conversion and Storage, 16(1), 2018.</p><p> <br></p><p>S. Kim, J. Wee, K. Peters, and H.-Y. Huang, “Multiphysics Coupling in Lithium-ion Battery with Reconstructed Porous Microstructures,” Journal of Physical Chemistry C, 122 (10), 2017.</p><p> <br></p><p>S. Kim and H.-Y. Huang, "Mechanical Stresses at the Cathode-Electrolyte Interface in Lithium-ion Batteries,'' Journal of Materials Research, 31 (21), 2016 .<br></p><p><br></p><p>S. Kim “Stresses at Electrode-Electrolyte Interface in Lithium-ion Batteries via Multiphysics Modeling,” Thesis, North Carolina State University, 2015.</p><p> <br></p><p>S.-H. Kim, S. Kim, D. Lee, “Understanding size selection of nanoparticles using a differential mobility analyzer (DMA) and its performance enhancement", Particle and Aerosol Research, 10, 2014<br></p></div>Energy Storage Technologyhttps://bios.inl.gov/BioPhotos/SangwookKim.pngPostdoctoral Researcher
Bin Lihttps://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=824Bin LiDr. Bin Li is a senior staff engineer/scientist in the directorate of Energy and Environmental Science & Technology at Idaho National Laboratory, leading the research thrusts in the area of transportation and stationary energy storage technologies, spanning from discovering new materials and developing novel technologies for lithium ion and Li metal batteries, redox flow batteries and zinc ion battery to understanding failure modes for batteries impact life and performance. He serves as the technical lead on energy storage R&D at INL and Principle Investigator for multi-projects awarded by DOE. Prior to joining INL, he was a senior scientist at Pacific Northwest National Laboratory. Dr. Li received his Ph.D. in material science & engineering from Tsinghua University. He was a postdoctoral fellow at Rensselaer Polytechnic Institute (2010-2011). Dr. Li has published more than 50 peer-reviewed journal papers (Google H-index:34) and filed 10 US patents (issued and pending, one of them was licensed by industries) in the area of energy storage and conversion research area. Dr. Li is also interested in and good at H2/NH3 generation through electrochemical methods, fuel cells, electrolyzers and electrochemical catalysts as well as technology transfer. <div class="ExternalClassCF64C59AE6B64EC8B82A8ECFD860A3E4"><p>Ph.D., Materials Science and Engineering – Tsinghua University</p><p>B.S., Materials Science and Engineering – University of Science and Technology<br></p></div><div class="ExternalClass6419A9297C104BB8B08826E1B1A74AB9"><p>Electrochemical Society<br> American Chemical Society</p><p>Materials Research Society<br> Active Reviewer for ACS, Elsevier, Wiley and NPG journals<br> Proposal reviewer for DOE offices<br> Active conference/symposium invited speaker, organizer and chair in the area of energy storage for several professional organizations including MRS, ECS, and ACS.</p><p>Invited Media Interview on the development direction of flow batteries in Annual Next-Generation Energy Storage<br></p></div><div class="ExternalClass348CA3D4A2F74364BB855C2AA6214D3F"><div dir="ltr" style="text-align:left;"></div><p style="text-align:left;">Pan H, <span lang="EN-US" style="text-decoration:underline;">B Li</span>*, Z Nie, D Mei, M Vijayakumar, G Li, V Sprenkle, J Liu. 2017. "Controlling Solid-Liquid Conversion Reactions for Highly Reversible Aqueous Zinc-iodine Battery."<strong><em> </em></strong> <strong><em>ACS Energy Letters</em></strong> 2:2674-2680 </p><p style="text-align:left;"><span lang="EN-US" style="text-decoration:underline;">Li B</span>, Z Nie, M Vijayakumar, G Li, J Liu, VL Sprenkle, and W Wang.  2015. "Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery." <strong><em>Nature Communications</em></strong> 6: Article No. 6303.   </p><p style="text-align:left;"><span lang="EN-US" style="text-decoration:underline;">Li B</span><span lang="EN-US" style="text-decoration:underline;">*</span> and J Liu. 2017. " Progresses and directions in low-cost redox flow batteries for large-scale energy storage." <strong><em>National Science Review</em></strong> 4 (1): 91 <strong><em>(Invited)</em></strong> </p><p style="text-align:left;"><span lang="EN" style="text-decoration:underline;">Li B</span><span lang="EN" style="text-decoration:underline;">*</span>, J Liu, Z Nie, W Wang, DM Reed, J Liu, BP McGrail, and VL Sprenkle. 2016. "Metal-organic frameworks as highly active electrocatalysts for high-energy density, aqueous zinc-polyiodide redox flow batteries." <strong><em>Nano Letters</em></strong> 16(7):4335-4340 </p><p style="text-align:left;"><span lang="EN" style="text-decoration:underline;">Li B</span>, M Gu, Z Nie, X Wei, CM Wang, VL Sprenkle, and W Wang. 2014. "Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery ." <strong><em>Nano Letters</em></strong> 14(1):158-165. </p><p style="text-align:left;"><span lang="EN" style="text-decoration:underline;">Li B</span>, Q Luo, X Wei, Z Nie, EC Thomsen, B Chen, VL Sprenkle, and W Wang. 2014. "Capacity Decay Mechanism of Microporous Separator-Based All-Vanadium Redox Flow Batteries and its Recovery." <strong><em>ChemSusChem</em></strong> 7(2):577-584. </p><p style="text-align:left;"><span lang="EN" style="text-decoration:underline;">Li B</span>, J Zhang, TC Kaspar, V Shutthanandan, RC Ewing, and J Lian. 2013. "Multilayered YSZ/GZO films with greatly enhanced ionic conduction for low temperature solid oxide fuel cells." <strong><em>Physical Chemistry Chemical Physics</em></strong>. PCCP 15(4):1296-1301. </p><p style="text-align:left;"><span lang="EN" style="text-decoration:underline;">Li B</span>, M Gu, Z Nie, Y Shao, Q Luo, X Wei, X Li, J Xiao, CM Wang, VL Sprenkle, and W Wang. 2013. "Bismuth Nanoparticle Decorating Graphite Felt as a High-Performance Electrode for an All-Vanadium Redox Flow Battery." <strong><em>Nano Letters</em></strong> 13(3):1330-1335. </p><p style="text-align:left;">Reed DM, EC Thomsen, <span lang="EN" style="text-decoration:underline;">B Li</span>*, W Wang, Z Nie, BJ Koeppel, and VL Sprenkle. 2016. "Performance of a Low Cost Interdigitated Flow Design on a 1 kW Class All Vanadium Mixed Acid Redox Flow Battery." <strong><em>Journal of Power Sources</em></strong> 306:24-31. </p><p style="text-align:left;">Reed DM, EC Thomsen, <span lang="EN" style="text-decoration:underline;">B Li</span>*, W Wang, Z Nie, BJ Koeppel, JP Kizewski, and VL Sprenkle. 2016. "Stack Developments in a kW class all vanadium mixed acid redox flow battery at the Pacific Northwest National Laboratory." <strong><em>Journal of the Electrochemical Society </em></strong>163(1):A5211-A5219. </p><p style="text-align:left;">Estevez L, DM Reed, Z Nie, AM Schwarz, MI Nandasiri, JP Kizewski, W Wang, EC Thomsen, J Liu, J Zhang, VL Sprenkle, and <span lang="EN" style="text-decoration:underline;">B Li</span>*. 2016. " Tunable oxygen functional groups as electro-catalysts on graphite felt surfaces for all vanadium flow batteries. "<strong><em>ChemSusChem</em></strong><strong><em>  </em></strong>9(12):1455-1461. </p><p style="text-align:left;">Wei X, <span lang="EN" style="text-decoration:underline;">B Li</span><span lang="EN" style="text-decoration:underline;">*</span>, and W Wang. 2015. "Porous Polymeric Composite Separators for Redox Flow Batteries." <strong><em>Polymer Reviews</em></strong> 55(2):247-272. <strong><em>(I</em></strong><strong><em>nvited)</em></strong> </p><p style="text-align:left;"><span lang="EN" style="text-decoration:underline;">Li B</span>, L Li, W Wang, Z Nie, B Chen, X Wei, Q Luo, Z Yang, and VL Sprenkle. 2013. "Fe/V Redox Flow Battery Electrolyte Investigation and Optimization." <strong><em>Journal of Power Sources</em></strong> 229:1-5. </p><p style="text-align:left;"><span lang="EN-US" style="text-decoration:underline;">Li B</span>, X Wei, W Pan. 2008. " Electrical properties of Mg-doped Gd<sub>0.1</sub>Ce<sub>0.9</sub>O<sub>1.95</sub> under different sintering conditions. " <strong><em>Journal of Power Sources</em></strong><strong> </strong>183 (2):498-505.  </p><p style="text-align:left;"><span lang="EN-US" style="text-decoration:underline;">Li B</span>, X Wei, W Pan. 2009. "<a href="http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=1AM2i3I%402e2pFo7Acbb&page=1&doc=1&colname=WOS">Synthesis of doped ceria-zirconia core-shell nanocomposites via sol-gel process</a>. " <strong><em>Journal of Power Sources</em></strong><strong> </strong>193 (2):598-601.  </p><p style="text-align:left;">Li B, YY Liu, Wei X, W Pan. 2010. "Electrical properties of ceria co-doped with Sm<sup>3+</sup> and Nd<sup>3+</sup><strong>."</strong><strong><em>Journal of Power Sources</em></strong><strong> </strong>195 (4):969-976.  </p><p style="text-align:left;">Li B, W Liu, W Pan. 2010. "Synthesis and electrical properties of apatite-type La<sub>10</sub>Si<sub>6</sub>O<sub>27</sub>." <strong><em>Journal of Power Sources</em></strong><strong> </strong>195 (8): 2196-2201.  </p><p style="text-align:left;">Li B, X Wei, W Pan. 2010. "Improved electrical conductivity of Ce<sub>0.9</sub>Gd<sub>0.1</sub>O<sub>1.95</sub> and Ce<sub>0.9</sub>Sm<sub>0.1</sub>O<sub>1.95</sub> by co-doping." <strong><em>Int. J. Hydrogen </em></strong><strong><em>Energ</em></strong><em>.</em> 35: 3018–3022. </p><p style="text-align:left;">Duan, W, J Huang, JA Kowalski, IA Shkrob, M Vijayakumar, E Walter, B Pan, Z Yang, Milshtein JD, B Li, C Liao. 2017. "Wine-Dark Sea" in an Organic Flow Battery: Storing Negative Charge in 2, 1, 3-Benzothiadiazole Radicals Leads to Improved Cyclability." <strong><em>ACS Energy Letters</em></strong> 2 (5):1156-1161. </p><p style="text-align:left;">Cheng Y, L Luo, L Zhong, J Chen, B Li, W Wang, SX Mao, CM Wang, VL Sprenkle, G Li, and J Liu. 2016. "Highly Reversible Zinc-ion Intercalation with Chevrel Phase Mo6S8 Nanocubes and Applications for Advanced Zinc-ion Batteries." <strong><em>ACS Applied Materials & Interfaces</em></strong> 8(22):13673-13677. </p><p style="text-align:left;">Vijayakumar M, Q Luo, RB Lloyd, Z Nie, X Wei, B Li, VL Sprenkle, JD Londono, M Unlu, and W Wang. 2016. "Tuning the perfluorosulfonic acid membrane morphology for vanadium redox flow batteries." <strong><em>ACS Applied Materials & Interfaces</em></strong> 8(50):34327-34334. </p><p style="text-align:left;">Wei X, W Duan, J Huang, L Zhang, B Li, DM Reed, W Xu, VL Sprenkle, and W Wang. 2016. "A High-Current, Stable Nonaqueous Organic Redox Flow Battery." <strong><em>ACS Energy Letters</em></strong> 1(4):705-711. </p><p style="text-align:left;">Shao Y, Y Cheng, W Duan, W Wang, B Li, Y Lin, Y Wang, and J Liu. 2015.  "Nanostructured Electrocatalysts for PEM Fuel Cells and Redox Flow Batteries: A Selected Review." <strong><em>ACS Catalysis</em></strong> 5(12): 7288-7298. (Invited) </p><p style="text-align:left;">Reed DM, EC Thomsen, W Wang, Z Nie, B Li, X Wei, BJ Koeppel, and VL Sprenkle. 2015. "Performance of Nafion -N115, Nafion-NR-212, and Nafion-NR-211 in a 1 kW Class All Vanadium Mixed Acid Redox Flow Battery." <strong><em>Journal of Power Sources</em></strong> 285:425-430. </p><p style="text-align:left;">Wei X, G Xia, BW Kirby, EC Thomsen, B Li, Z Nie, GL Graff, J Liu, VL Sprenkle, and W Wang. 2015. "An Aqueous Redox Flow Battery Based on Neutral Alkali Metal Ferri/ferrocyanide and Polysulfide Electrolytes." J<strong><em>ournal of the Electrochemical Society</em></strong> 163(1):A5150-A5153. </p><p style="text-align:left;">Crawford AJ, VV Viswanathan, DE Stephenson, W Wang, EC Thomsen, DM Reed, B Li, PJ Balducci, MCW Kintner-Meyer, and VL Sprenkle. 2015. "Comparative analysis for various redox flow batteries chemistries using a cost performance model." <strong><em>Journal of Power Sources </em></strong>293:388-399. </p><p style="text-align:left;">Vijayakumar M, N Govind, B Li, X Wei, Z Nie, S Thevuthasan, VL Sprenkle, and W Wang. 2015. "Aqua-vanadyl ion interaction with Nafion membranes." <strong><em>Frontiers in Energy Research</em></strong> 3:Article No. 10. </p><p style="text-align:left;">Wei X, W Xu, J Huang, L Zhang, ED Walter, CW Lawrence, M Vijayakumar, WA Henderson, TL Liu, L Cosimbescu, B Li, VL Sprenkle, and W Wang. 2015. "Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery." <strong><em>Angewandte</em></strong><strong><em> </em></strong><strong><em>Chemie</em></strong><strong><em> International Edition </em></strong>127(30):8808-8811. </p><p style="text-align:left;">Viswanathan VV, AJ Crawford, DE Stephenson, S Kim, W Wang, B Li, GW Coffey, EC Thomsen, GL Graff, PJ Balducci, MCW Kintner-Meyer, and VL Sprenkle. 2014. "Cost and Performance Model for Redox Flow Batteries." <strong><em>Journal of Power Sources</em></strong> 247:1040-1051. </p><p style="text-align:left;">Wei X, Q Luo, B Li, Z Nie, E Miller, J Chambers, VL Sprenkle, and W Wang. 2013. "Performance Evaluation of Microporous Separator in Fe/V Redox Flow Battery." <strong><em>ECS Transactions </em></strong>45(26):17-24. </p><p style="text-align:left;">Wei X, Z Nie, Q Luo, B Li, B Chen, KL Simmons, VL Sprenkle, and W Wang.  2013.  "Nanoporous Polytetrafluoroethylene/Silica Composite Separator as a High-Performance All-Vanadium Redox Flow Battery Membrane." <strong><em>Advanced Energy Materials </em></strong>3(9):1215-1220. </p><p style="text-align:left;">Wei X, Z Nie, Q Luo, B Li, VL Sprenkle, and W Wang.  2013. "Polyvinyl Chloride/Silica Nanoporous Composite Separator for All-Vanadium Redox Flow Battery Applications." <strong><em>Journal of the Electrochemical Society</em></strong> 160(8):A1215 - A1218. </p><p style="text-align:left;">Luo Q, L Li, W Wang, Z Nie, X Wei, B Li, B Chen, Z Yang, and VL Sprenkle. 2013. "Capacity Decay and Remediation of Nafion-based All-Vanadium Redox Flow Batteries." <strong><em>ChemSusChem</em></strong> 6(2):268-274. </p><p style="text-align:left;">Wang W, Q Luo, B Li, X Wei, L Li, and Z Yang. 2013. "Recent Progress in Redox Flow Battery Research and Development." <strong><em>Advanced Functional Materials</em></strong> 23(8):970-986.(<strong><em>invited</em></strong>) </p><p style="text-align:left;">Wei X, L Li, Q Luo, Z Nie, W Wang, B Li, G Xia, E Miller, J Chambers, and Z Yang. 2012. "Microporous Separators for Fe/V Redox Flow Batteries." <strong><em>Journal of Power Sources </em></strong>218(1):39-45. </p><p style="text-align:left;">Luo Q, L Li, Z Nie, W Wang, X Wei, B Li, B Chen, and Z Yang. 2012. "In-situ Investigation of Vanadium Ion Transport in Redox Flow Battery." <strong><em>Journal of Power Sources</em></strong> 218(1):15-20. </p><p style="text-align:left;">Liu YY, B Li, X Wei, W Pan. 2008. "<a href="http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=1AM2i3I%402e2pFo7Acbb&page=1&doc=5&colname=WOS">Citric-nitrate combustion synthesis and electrical conductivity of the Sm<sup>3+</sup> and Nd<sup>3+</sup> co-doped ceria electrolyte</a>." <strong><em>J. Am. Ceram. Soc.</em></strong><em> </em>91 (12):3926-3930.  </p><p style="text-align:left;">Liu W, B Li, HQ Liu, W Pan. 2011. "Electrical conductivity of textured Sm<sup>3+</sup> and Nd<sup>3+</sup> Co-doped CeO2 thin-film electrolyte."<strong><em> </em></strong><strong><em>Electrochimica</em></strong><strong><em> Acta</em></strong>:3334-3337.  </p><p style="text-align:left;">Liu W, B Li, HQ Liu, W Pan. 2011. "<a href="http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=2&SID=3Bojkhn55LGHOjc6B7n&page=1&doc=1">Fabrication of Sm<sup>3+</sup> and Nd<sup>3+</sup> co-doped CeO<sub>2 </sub>thin-film electrolytes by radio frequency magnetron sputtering</a>."<strong><em> </em></strong><strong><em>Electrochimica</em></strong><strong><em> Acta</em></strong> 56:8329-8333. </p><p style="text-align:left;">Wei X, W Pan, LF Cheng, B Li. 2009. "<a href="http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=1AM2i3I%402e2pFo7Acbb&page=1&doc=3&colname=WOS">Atomistic calculation of association energy in doped ceria</a>." <em>Solid State Ionics </em>180 (1):13-17.  </p><p style="text-align:left;">Liu W, YY Liu, B Li , W Pan. 2010. "Ceria (Sm<sup>3+</sup>, Nd<sup>3+</sup>)/carbonates composite electrolytes with high electrical conductivity at low temperature." <strong><em>Comp. Sci. & Tech </em></strong><em>.</em><em><strong> </strong></em>70:181-185.  </p><p style="text-align:left;">Li HP, W Zhang, B Li, W Pan. 2010. "Diameter dependent Photocatalytic Activity of Electrospun TiO2 Nanofiber." J. Am. Ceram. Soc. 93:2503-2506.<br></p></div>Energy Storage Technologyhttps://bios.inl.gov/BioPhotos/BinLi.jpgSenior staff engineer/scientist
Bor-Rong Chenhttps://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=812Bor-Rong ChenDr. Bor-Rong (Hypo) Chen is a postdoctoral research associate in the Energy Storage Technology group at Idaho National Laboratory. Her research focuses on the development of a framework combining materials science and machine learning to predict the lifetime and aging mechanisms of lithium ion batteries. Bor-Rong has a Ph.D. from the Department of Materials Science and Engineering at Northwestern University and a B.Sc. from National Taiwan University. Before joining Idaho National Laboratory, Bor-Rong was a postdoctoral researcher at SLAC National Accelerator Laboratory, where she specialized in X-ray scattering and spectroscopy. In addition to materials characterization, Bor-Rong is also experienced in the synthesis of metastable transition metal oxides and nitrides. <div class="ExternalClass822D04824BA146F588E59C5DAD82187B"><p>​Ph.D, Department of Materials Science and Engineering - Northwestern University<br></p><p>M.S., Department of Materials Science and Engineering - National Tsing Hua University<br></p><p>B.S., Department of Materials Science and Engineering- National Taiwan University<br></p></div><div class="ExternalClassA7B1190FB08D48599C573C472A5205F0"><p>W. Sun, C. Bartel, E. Arca, S.Bauers, B. Matthews, B. Orvañanos, B. R. Chen,  L. Schelhas,  M. F. Toney, W. Tumas , J. Tate, A. Zakutayev, S. Lany, A. Holder, G. Ceder,  "A Map of the Inorganic Ternary Metal Nitrides", Nature Communications(2019). (doi: 10.1038/s41563-019-0396-2).<br></p><p><br></p><p>E. Arca, J. D Perkins, S. Lany, A. Mis, B. R. Chen, P. Dippo, J. L Partridge, W. Sun, A. Holder, A. C. Tamboli, M. F. Toney, L. T. Schelhas, G. Ceder, W.T umas, G. Teeter, A. Zakutayev "Zn2SbN3: growth and characterization of a metastable photoactive semiconductor", Materials Horizons(2019)(doi: 10.1039/C9MH00369J).<br></p><p><br></p><p>B.R. Chen, W. Sun, D.A. Kitchaev, J. S. Mangum, V. Thampy, L. M. Garten, D.G. Ginley, B. P. Gorman, K. H. Stone, G. Ceder, M. F. Toney, L. T. Schelhas, "Understanding crystallization pathways leading to manganese oxide polymorph formation", Nature Communications (2018)(doi:  10.1038/s41467-018-04917-y)* This work was highlighted on SLAC front page:  <a href="https://www6.slac.stanford.edu/news/2018-07-02-x-ray-experiment-confirms-theoretical-model-making-new-materials.aspx">https://www6.slac.stanford.edu/news/2018-07-02-x-ray-experiment-confirms-theoretical-model-making-new-materials.aspx</a>.<br></p><p><br></p><p>B.R. Chen, L. A. Crosby, C. George, R. M. Kennedy, N. M. Schweitzer, P.C. Stair, L. D. Marks, K.R. Poeppelmeier, R.P. Van Duyne, and M.J. Bedzyk, "Morphology and CO oxidation Activity of Pd nanoparticles on SrTiO3nanopolyhedra", ACS Catalysis(2018)(doi: 10.1021/acscatal.7b04173).<br></p><p><br></p><p>L.A. Crosby, B.R. Chen, R. M Kennedy, J. Wen, K. R Poeppelmeier, M.J Bedzyk, and L.D. Marks, "All roads lead to TiO2: Solvothermal Synthesis of Titanates", Chemistry of Materials (2018) (doi:10.1021/acs.chemmater.7b04404).<br></p><p><br></p><p>A.R. Mouat, C. Whitford,B.R. Chen, F. Parras, M. M. Pruski, M. Delferro, R.Q. Snurr, M. J. Bedzyk, P. C. Stair, and T. J. Marks, " Synthesis of monodisperse Pd nanoparticles from a single-site palladium surface complex by alkene reduction", Chemistry of Materials (2018) (doi: 10.1021/acs.chemmater.7b04909).<br></p><p><br></p><p>L. A. Crosby, R. M. Kennedy, B.R. Chen, J. Wen, K. R. Poeppelmeier, P. C Stair, M. J. Bedzyk, L.D. Marks,"Complex surface structure of (110) terminated strontium titanate nanododecahedra", Nanoscale, 816606-16611.​(doi: 10.1039/C6NR05516H).</p><p><br></p><p>B.R. Chen, C. George, Y. Lin, L. Hu, L. Crosby, X. Hu, P.C. Stair, L. D. Marks, K.R. Poeppelmeier, R.P. Van Duyne, and M.J. Bedzyk, "Morphology and oxidation state of ALD-grown Pd nanoparticles on TiO2-and SrO-terminated SrTiO3nanocuboids ",Surface Science, 648291-298 (2016) (doi:10.1016/j.susc.2015.10.057).<br></p><p><br></p><p>T. W. Day, K. S. Weldert, W. G. Zeier, B.R. Chen, S. L. Moffitt, U. Weis, K. P. Jochum, M. Panthöfer, M. J. Bedzyk, G. J. Snyder, and W. Tremel, "Influence of compensating defect formation on the doping efficiency and thermoelectric properties of Cu2-ySe1–xBrx", Chemistry of Materials, 277018-7027 (2015)  (doi:10.1021/acs.chemmater.5b02405).<br></p><p><br></p><p>T.W. Pi, B.R. Chen, M.L. Huang, T.H. Chiang, G.K. Wertheim, M.Hong and J. Kwo, "Surface-Atom Core-Level Shift in GaAs(111)A-2x2", Journal of the Physical Societyof Japan, 81064603 (2012) (doi:10.1143/JPSJ.81.064603).<br></p><p><br></p><p>Y.H.Chang, M.L.Huang, P.Chang, J.Y.Shen, B.R.Chen, C.L.Hsu, T.W.Pi,M.Hong, J.Kwo,"In situatomic layer deposition and synchrotron-radiation photoemission study of Al2O3on pristine n-GaAs(0 0 1)-4 × 6 surface", Microelectronic Engineering, 881101-1104 (2011) (doi:10.1016/j.mee.2011.03.064).<br></p><p><br></p><p>Y.H. Chang , M.L. Huang, P. Chang, C.A. Lin, Y.J. Chu, B.R. Chen, C.L. Hsu, J.Kwo,  T.W. Pi and M.Hong, "Electrical properties and interfacial chemical environments of in-situ atomic layer deposited Al2O3on freshly molecular beam epitaxy grown GaAs", Microelectronic Engineering, 88440-443 (2011) (doi:10.1016/j.mee.2010.09.015).<br></p><p><br></p></div>Energy Storage Technologyhttps://bios.inl.gov/BioPhotos/BorRongChen.jpg<div class="ExternalClass080D1BC07FB6459099A97C9FB5E88DE3"><p><a href="https://www.linkedin.com/in/brchen">​LinkedI​n</a><br></p><p><a href="https://scholar.google.com/citations?user=fSH3fsoAAAAJ&hl=en">Google Scholar</a><br></p></div>Postdoctoral Researcher
Corey Efawhttps://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=814Corey EfawCorey Efaw joined the Energy Storage team in August 2019 as a Graduate Fellow. He’s concurrently acquiring his PhD in Materials Science & Engineering from Boise State University as part of the DOE’s INL Graduate Fellowship Program. He has research experience with zirconium alloys as a nuclear reactor cladding, as well as lightweight alloy (Al, Mg) corrosion mechanisms. His dissertation focus is on modifying lithium metal anodes for improved surface stability, along with utilizing many characterization techniques to acquire spatially resolved surface properties.<div class="ExternalClass347A7F073E9045DE890B0877F72E30B7"><p style="text-align:justify;">Ph.D., Materials Science and Engineering – Boise State University</p><p style="text-align:justify;">B.S., Mechanical Engineering – Boise State University<br></p></div><div class="ExternalClass8DC5B67EF5F3484CBA3638F3152B4342"><p>C.M. Efaw, J.L. Vandegrift, M. Reynolds, B.J. Jaques, H. Hu, H. Xiong, and M.F. Hurley, Characterization of Zirconium Oxides Part II: New Insights on the Growth of Zirconia Revealed Through Complementary High-Resolution Mapping Techniques, accepted in Corr. Sci. (2020). doi:TBA </p><p>C.M. Efaw, J.L. Vandegrift, M. Reynolds, S. McMurdie, B.J. Jaques, H. Hu, H. Xiong, and M.F. Hurley, Characterization of Zirconium Oxides Part I: Raman Mapping and Spectral Feature Analysis, Nuclear Materials and Energy21,100707(2019). doi:10.1016/j.nme.2019.100707 </p><p>A. Kvryan, C.M. Efaw, K.A. Higginbotham, O.O. Maryon, P.H. Davis, E.Graugnard, H.K. Trivedi, and M.F. Hurley, Corrosion Initiation and Propagation on Carburized Martensitic Stainless Steel Surfaces Studied via Advanced Scanning Probe Microscopy, Materials12(6), 940 (2019). doi:10.3390/ma12060940 </p><p>C.M. Efaw, T. da Silva, P.H. Davis, L. Li, and M.F. Hurley, Toward Improving Ambient Volta Potential Measurements with SKPFM for Corrosion Studies, J. Electrochem. Soc.166(11), C3018(2019). doi:10.1149/2.0041911jes </p><p>C. Efaw, T. da Silva, P. Davis, L. Li, E.Graugnard, and M. Hurley, Improving the Relative Calculations of Volta Potential Differences Acquired from Scanning Kelvin Probe Force Microscopy (SKPFM) from Comparing an Inert Material to First-Principle Calculations, J. Electrochem. Soc. Trans. 85(13), 701 (2018). doi:10.1149/08513.0701ecst </p><p>P.H. Davis, C.M. Efaw, L.K. Patten, C. Hollar, C. Watson, B. Knowlton, and P. Müllner, Localized Deformation in Ni-Mn-Ga Single Crystals, J. Appl. Phys. 123(21), 215102 (2018). doi:10.1063/1.5026572 </p><p>T.H. da Silva, E.B. Nelson, I. Williamson, C.M. Efaw, E. Sapper, M.F. Hurley, and L. Li, First-principles surface interaction studies of aluminum-copper and aluminum-copper-magnesium secondary phases in aluminum alloys, Appl. Surf. Sci. 439, 910 (2018). doi:10.1016/j.apsusc.2017.12.256 </p><p>A. Kvryan, K. Livingston, C.M. Efaw, K. Knori, B.J. Jacques, P.H. Davis, D.P. Butt, and M.F. Hurley, Microgalvanic Corrosion Behavior of Cu-Ag Active Braze Alloys Investigated with SKPFM, Metals 6, 91 (2016). doi:10.3390/met6040091 </p><p>M. F. Hurley, C. M. Efaw, P. H. Davis, J. R. Croteau, E. Graugnard and N. Birbilis, Volta Potentials Measured by Scanning Kelvin Probe Force Microscopy as Relevant to Corrosion of Magnesium Alloys, Corrosion 71 (2), 160 (2015).doi:10.5006/1432<br></p></div>Energy Storage Technologyhttps://bios.inl.gov/BioPhotos/CoreyEfaw.pngGraduate Fellow
Meng Li, Ph.D.https://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=815Meng Li, Ph.D. Meng Li is currently a research scientist working at Idaho National Laboratory, USA. She received her B.E in Materials Science and Engineering from Huazhong University of Science and Technology (HUST), China in Jun 2012, and earned her Ph.D. degree in Materials Science from HUST in Dec 2016. During her graduate studies, she spent one and a half years at Curtin University, Australia, as a joint graduated student. Meng joined the University of Alberta, Canada, as a postdoctoral fellow of Materials Engineering after she obtained her Ph.D. and worked there until Feb 2019. Meng has been working on Energy Storage & Conversions and Catalysis since 2012. She has experience with theoretical computations (DFT/AIMD), machine learning, aqueous electrolyzers, solid oxide electrochemical cells, metal-air batteries, lithium-ion batteries. She combines experimental design and examination with theoretical calculation to understand the mechanisms of related reactions and intrinsic properties of developed materials. She has been the author on 39 peer reviewed papers, including those on Nature Catalysis, Chem, ACS Energy Letter and Nano Energy. <div class="ExternalClassAC64CF1031CE40A9A32E70959EA8E8E1"><p>Ph.D., Materials Science – Huazhong University of Science and Technology</p><p>B.S., Materials Science and Engineering – Huazhong University of Science and Technology<br></p></div><div class="ExternalClassD05BC27F9A0E42D0BB6E9AAF9AB49BCF"><p></p><div><div>Editorial board member of Materials.<br></div><div><br></div><div>Guest Editor leading a special issue for Crystals.<br></div><div><br></div><div>Guest Editor leading a special issue for Materials.<br></div><div><br></div><div>Reviewer for several journals, including Journal of Power Sources, Applied Catalysis B: Environmental, Journal of Alloys and Compounds, etc.<br></div><br></div></div><div class="ExternalClassDDB6767254654AF599878266DABBC2A8"><p>"Sensitivity and reliability of key electrochemical markers for detecting lithium plating during extreme fast charging" P. R. Chinnam, T. R. Tanim, E. J. Dufek, C. C. Dickerson, M. Li, Journal of Energy Storage, 46 (2022) 103782.</p><p><br>"In-situ construction of ceria-metal/titanate heterostructure with controllable architectures for efficient fuel electrochemical conversion" S. He, M. Li, J. Hui, X. Yue, Applied Catalysis B: Environmental, 298 (2021) 120588.<br><br></p><p>"Binary-dopant promoted lattice oxygen participation in OER on cobaltate electrocatalyst" L. Tang, T. Fan, Z. Chen, J. Tian, H. Guo, M. Peng, F. Zuo, X. Fu, M. Li, Y. Bu, Y. Luo, J. Li, Y. Sun, Chemical Engineering Journal, 417 (2021) 129324.<br></p><p><br></p><p>"Switching of metal-oxygen hybridization for selective CO2 electrohydrogenation under mild temperature and pressure” M. Li, B. Hua, L.-C. Wang, J. D. Sugar, W. Wu, Y. Ding, J. Li, D. Ding, Nature Catalysis, 4 (2021) 274-283.<br></p><p><br></p><p>“Enhancing perovskite electrocatalysis through synergistic functionalization of B-site cation for efficient water splitting” L. Tang, Z. Chen, F. Zuo, B. Hua, H. Zhou, M. Li, J. Li, Y. Sun, Chemical Engineering Journal, 401 (2020), 126082.<br></p><p><br></p><p>“Organic photochemistry-assisted nanoparticle segregation on perovskites” Z. Chen, B. Hua, X. Zhang, L. Chen, Y.-Q. Zhang, G. Yang, G. Wan, H. Zhou, Y. Yang, J. Chen, H. Fan, Q. Li, M. Li, J. Li, W. Zhou, Z. Shao, J.-L. Luo, Y. Sun, Cell Reports Physical Science, 1 (2020), 100243.<br></p><p><br></p><p>“Discovery of single-atom alloy catalysts for CO2-to-methanol reaction by density functional theory calculations” M. Li, B. Hua, L.-C. Wang, Z. Zhou, K. Stowers, D. Ding, Catalysis Today, 2020, DOI: 10.1016/j.cattod.2020.04.059.<br></p><p><br></p><p>“Exploring Ni(Mn1/3Cr2/3)2O4 spinel-based electrode for solid oxide cell” N. Duan, M. Gao, B. Hua, M. Li, B. Chi, J. Li, J.-L. Luo, Journal of Materials Chemistry A,  8 (2020), 3988-3998.<br></p><p><br></p><p>“A-site deficient perovskite with nano-socketed Ni-Fe alloy particles as highly active and durable catalyst for high-temperature CO2 electrolysis” S. Ding, M. Li, W. Pang, B. Hua, N. Duan, Y.-Q. Zhang, S.-N. Zhang, Z. Jin, J.-L. Luo, Electrochimica Acta, 225 (2020), 135683.<br></p><p><br></p><p>“A rational design of Cu2O-SnO2 core-shell catalyst for highly selective CO2-to-CO conversion” S.-N. Zhang, M. Li, B. Hua, N. Duan, S. Ding, S. Bergens, K. Shankar, J.-L. Luo, ChemCatChem, 11 (2019) 4147.<br></p><p><br></p><p>“Charge transfer dynamics in RuO2/perovskite nanohybrid for enhanced electrocatalysis in solid oxide electrolyzers” M. Li, B. Hua, J. Chen, Y. Zhong, J.-L. Luo, Nano Energy, 57 (2019), 186.<br></p><p><br></p><p>“In situ grown cobalt phosphide (CoP) on perovskite nanofibers as an optimized trifunctional electrocatalyst for Zn–air batteries and overall water splitting” Y.-Q. Zhang, H.-B. Tao, Z. Chen, M. Li, Y.-F. Sun, B. Hua, J.-L. Luo, Journal of Materials Chemistry A, 7 (2019) 26607.<br></p><p><br></p><p>“Activating p-blocking centers in perovskite for efficient water splitting” B. Hua, M. Li, W. Pang, W. Tang, S. Zhao, Z. Jin, Y. Zeng, B. Shalchi Amirkhiz, J.-L. Luo, Chem, 4 (2018) 2902.<br></p><p><br></p><p>“Thermally stable and coking resistant CoMo alloy-based catalysts as fuel electrodes for solid oxide electrochemical cells” M. Li, B. Hua, Y. Zeng, B. Shalchi Amirkhiz, J.-L. Luo, Journal of Materials Chemistry A, 6 (2018), 15377.<br></p><p><br></p><p>“A facile surface chemistry approach to bifunctional excellence for perovskite electrocatalysis” B. Hua, M. Li, J.-L. Luo, Nano Energy, 49 (2018), 117.<br></p><p><br></p><p>“A strongly cooperative spinel nanohybrid as an efficient bifunctional oxygen electrocatalyst for oxygen reduction reaction and oxygen evolution reaction” Y.-Q. Zhang, M. Li, B. Hua, Y. Wang, Y.-F. Sun, J.-L. Luo, Applied Catalysis B: Environmental, 236 (2018), 413.<br></p><p><br></p><p>“Toward a rational photocatalyst design: a new formation strategy of co-catalyst/semiconductor heterostructures via in situ exsolution” Y.-F. Sun, Y.-L. Yang, J. Chen, M. Li, Y.-Q. Zhang, J.-H. Li, B. Hua, J.-L. Luo, Chemical Communications, 54 (2018), 1505.<br></p><p><br></p><p>“Iron oxide nanoclusters incorporated into iron phthalocyanine as highly active electrocatalysts for the oxygen reduction reaction” Y. Cheng, J. Liang, J.-P. Veder, M. Li, S. Chen, J. Pan, L. Song, H.-M. Cheng, C. Liu, S. P. Jiang, ChemCatChem, 10 (2018), 475.<br></p><p><br></p><p>“Alternative fuel cell technologies for cogenerating electrical power and syngas from greenhouse gases” M. Li, B. Hua, J.-L. Luo, ACS Energy Letters, 2 (2017), 1789.<br></p><p><br></p><p>“Coke Resistant and sulfur tolerant Ni-based cermet anodes for solid oxide fuel cells” M. Li, B. Hua, S. P. Jiang, J. Li, ECS Transactions, 78 (2017), 1217.<br></p><p><br></p><p>“Enhancing perovskite electrocatalysis of solid oxide cells through controlled exsolution of nanoparticles” B. Hua, M. Li, Y.-F. Sun, J.-H. Li, J.-L. Luo, ChemSusChem, 10 (2017) 3333.<br></p><p><br></p><p>“Grafting doped manganite into nickel anode enables efficient and durable energy conversions in biogas solid oxide fuel cells” B. Hua, M. Li, Y.-F. Sun, Y.-Q. Zhang, N. Yan, J. Li, T. Etsell, P. Sarkar, J.-L. Luo, Applied Catalysis B: Environmental, 200 (2017), 174.<br></p><p><br></p><p>“All-in-one perovskite catalyst: smart controls of architecture and composition toward enhanced oxygen/hydrogen evolution reactions” B. Hua, M. Li, Y.-Q. Zhang, Y.-F. Sun, J.-L. Luo, Advanced Energy Materials, 7 (2017) 1700666.<br></p><p><br></p><p>“A coupling for success: Controlled growth of Co/CoOx nanoshoots on perovskite mesoporous nanofibres as high-performance trifunctional electrocatalysts in alkaline condition” B. Hua, M. Li, Y.-F. Sun, Y.-Q. Zhang, N. Yan, J. Chen, T. Thundat, J. Li, J.-L. Luo, Nano Energy, 32 (2017) 247.<br></p><p><br></p><p>“Stabilizing double perovskite for effective bifunctional oxygen electrocatalysis in alkaline conditions” B. Hua, Y.-F. Sun, M. Li, Y.-Q. Zhang, N. Yan, J. Chen, Y. Zeng, B. S. Amirkhiz, J.-L. Luo, Chemistry of Materials, 29 (2017), 6228.<br></p><p><br></p><p>“Smart utilization of cobaltite-based double perovskite cathodes on barrier-layer-free zirconia electrolyte of solid oxide fuel cells” M. Li, K. Chen, B. Hua, J.-L. Luo, W. D.A. Rickard, J. Li, J. T.S. Irvine, S.-P. Jiang, Journal of Materials Chemistry A, 4 (2016), 19019.<br></p><p><br></p><p>“Enhancing sulfur tolerance of Ni-based cermet anodes of solid oxide fuel cells by ytterbium-doped barium cerate infiltration” M. Li, B. Hua, J.-L. Luo, S.-P. Jiang, J. Pu, B. Chi, J. Li, ACS Applied Materials & Interfaces, 8 (2016), 10293.<br></p><p><br></p><p>“Carbon-resistant Ni-Zr0.92Y0.08O2-δ supported solid oxide fuel cells using Ni-Cu-Fe alloy cermet as on-cell reforming catalyst and mixed methane-steam as fuel” B. Hua, M. Li, J.-L. Luo, J. Pu, B. Chi, J. Li, Journal of Power Sources, 303 (2016), 340.<br></p><p><br></p><p>“Facile synthesis of highly active and robust Ni–Mo bimetallic electrocatalyst for hydrocarbon oxidation in solid oxide fuel cells” B. Hua, M. Li, Y.-Q. Zhang, J. Chen, Y.-F. Sun, N. Yan, J. Li, J.-L. Luo, ACS Energy Letters, 1 (2016), 225.<br></p><p><br></p><p>“Biogas to syngas: flexible on-cell micro-reformer and NiSn bimetallic nanoparticle implanted solid oxide fuel cells for efficient energy conversion” B. Hua, M. Li, Y.-F. Sun, Y.-Q. Zhang, N. Yan, J. Chen, J. Li, T. Etsell, P. Sarkar, J.-L. Luo, Journal of Materials Chemistry A, 4 (2016), 4603.</p><p><br></p><p>“Novel layered solid oxide fuel cells with multiple-twinned Ni0.8Co0.2 nanoparticles: the key to thermally independent CO2 utilization and power-chemical cogeneration” B. Hua, N. Yan, M. Li, Y.-Q. Zhang, Y.-F. Sun, J. Li, T. Etsell, P. Sarkar, K. Chuang, J.-L. Luo, Energy & Environmental Science, 9 (2016), 207.<br></p><p><br></p><p>“Anode-engineered protonic ceramic fuel cell with excellent performance and fuel compatibility” B. Hua, N. Yan, M. Li, Y.-F. Sun, Y.-Q. Zhang, J. Li, T. Etsell, P. Sarkar, J.-L. Luo, Advanced Materials, 28 (2016), 8922.<br></p><p><br></p><p>“Toward highly efficient in situ dry reforming of H2S contaminated methane in solid oxide fuel cells via incorporating a coke/sulfur resistant bimetallic catalyst layer” B. Hua, N. Yan, M. Li, Y.-F. Sun, J. Chen, Y.-Q. Zhang, J. Li, T. Etsell, P. Sarkar, J.-L. Luo, Journal of Materials Chemistry A, 4 (2016), 9098.<br></p><p><br></p><p>“Direct application of cobaltite-based perovskite cathodes on the yttria-stabilized zirconia electrolyte for intermediate temperature solid oxide fuel cells” K. Chen, N. Li, N. Ai, M. Li, Y. Cheng, W. D. A. Rickard, J. Li, S. P. Jiang, Journal of Materials Chemistry A, 4 (2016), 17678.<br></p><p><br></p><p>“The excellence of both worlds: developing effective double perovskite oxide catalyst of oxygen reduction reaction for room and elevated temperature applications” B. Hua, Y.-Q. Zhang, N. Yan, M. Li, Y.-F. Sun, J. Chen, J. Li, J.-L. Luo, Advanced Functional Materials, 26 (2016), 4106.<br></p><p><br></p><p>“Carbon-tolerant Ni-based cermet anodes modified by proton conducting yttrium- and ytterbium-doped barium cerates for direct methane solid oxide fuel cells” M. Li, B. Hua, J.-L. Luo, S.-P. Jiang, J. Pu, B. Chi, J. Li, Journal of Materials Chemistry A, 3 (2015), 21609.<br></p><p><br></p><p>“Electrochemical performance and carbon deposition resistance of M-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (M = Pd, Cu, Ni or NiCu) anodes for solid oxide fuel cells” M. Li, B. Hua, J. Pu, B. Chi, J. Li, Scientific Reports, 5 (2015), 7667.<br></p><p><br></p><p>“BaZr0.1Ce0.7Y0.1Yb0.1O3−δ as highly active and carbon tolerant anode for direct hydrocarbon solid oxide fuel cells” M. Li, B. Hua, S. Jiang, J. Pu, B. Chi, J. Li, International Journal of Hydrogen Energy, 39 (2014), 15975.<br></p><p><br></p><p>“BaZr0.1Ce0.7Y0.1Yb0.1O3-δ enhanced coking-free on-cell reforming for direct-methane solid oxide fuel cells” B. Hua, M. Li, J. Pu, B. Chi, J. Li, Journal of Materials Chemistry A, 2 (2014), 12576.<br></p><p><br></p><p>“Methane on-cell reforming by alloys reduced from Ni0.5Cu0.5Fe2O4 for direct-hydrocarbon solid oxide fuel cells” B. Hua, M. Li, W. Zhang, J. Pu, B. Chi, J. Li, Journal of the Electrochemical Society, 161 (2014), F569.<br></p><p><br></p><p>“Enhanced electrochemical performance and carbon deposition resistance of Ni–YSZ anode of solid oxide fuel cells by in situ formed Ni–MnO layer for CH4 on-cell reforming” B. Hua, M. Li, B. Chi, J. Li, Journal of Materials Chemistry A, 2 (2014), 1150.<br></p><p><br></p><p>“Improved microstructure and performance of Ni-based anode for intermediate temperature solid oxide fuel cells” B. Hua, W. Zhang, M. Li, X. Wang, B. Chi, J. Pu, J. Li, Journal of Power Sources, 247 (2014), 170.<br></p></div>Energy Storage Technologyhttps://bios.inl.gov/BioPhotos/Meng's%20photo.jpgResearch Scientist
Jordan Toddhttps://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=816Jordan ToddJordan Todd is a Test Engineer at the Idaho National Laboratory’s Battery Test Center. He holds a bachelor’s degree in Electrical Engineering from Idaho State University. Outside of work Jordan enjoys various outdoor activities and making pottery.Infrastructure and Energy Storagehttps://bios.inl.gov/BioPhotos/JordanTodd.jpgBattery Test Engineer
Qiang Wang, Ph.D.https://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=800Qiang Wang, Ph.D.Dr. Qiang Wang is a senior staff engineer/scientist in the directorate of Energy and Environmental Science & Technology at Idaho National Laboratory, focusing on the research field of core-electrochemistry which is applied to new energy storage, conversion and critical elements recovery. He employs his fundamental understanding about electrochemistry on battery degradation mechanism, Diagnostic Testing and Prognostic Analysis of electrochemical systems at Idaho National Laboratory (INL), combining with Machine Learning data analysis. He received his bachelor’s in chemistry from Center China Normal University and his doctorate in physical chemistry from Wuhan University in China. Before joining INL, he worked at Worcester Polytechnic Institute as a faculty and a postdoctoral research associate from 2014 to 2019. He worked as visiting scholar at Pacific Northwest National Lab from 2013 to 2014 and worked as a postdoctoral research associate at Umass Boston from 2011 to 2013.<div class="ExternalClass9145A7D108B249E2A2CC74A399B78149"><p>​M.S., Chemistry, Wuhan University<br>B.S., Chemistry, Huazhong Normal University</p></div><div class="ExternalClass1875B806B7574167846C14881F973902"><p>​Material Research Society Since 2016<br>Sigma Xi Research Society, associate member 2016<br>Alpha Sigma Mu 2015<br>The Electrochemical Society 2011</p></div><div class="ExternalClass23F4D97A889C410F88ABD5AE365FB70D"><p>​Qiang Wang, Yan Wang, Fundamental Electrochemical Behavior of Antimony in Alkaline Solution, J. Sustain. Metall., DOI: 10.1007/s40831-019-00253-7. </p><p><br>Qiang Wang, Yan Wang, Re-examination of CuO Reduction Steps and Understanding of the Factors Influencing the Cyclic Voltammetry Profile of CuO, J. Electrochem. Soc., 2018, 165(11), A2439-A2445. </p><p><br>Qiang Wang, Mingchao Shang, Yong Zhang, Yuan Yang and Yan Wang, Rate-limiting Step in the Batteries with Metal Oxides as the Energy Materials, ACS Appl. Mater. Interfaces, 2018, 10(8), 7162-7170. </p><p><br>Qiang Wang, Bobin Fu, and Yan Wang, Iron Shell Formation by Electrolyzing Self-assembled Nano-particles, J. Electrochem. Soc., 2017, 164(13), E428-E433. </p><p><br>Qiang Wang, Bobin Fu, and Yan Wang, The Factors Determining Charge Rate of Magnetite Electrode and the Functional Mechanism of Sulfide on the Reaction, Electrochim. Acta, 2017, 258, 143-152.</p><p> <br>Qiang Wang, Yan Wang, Overcoming the Limiting Step of Fe2O3 Reduction via in Situ Sulfide Modification, ACS Appl. Mater. Interfaces, 2016, 8(16), 10334–10342. </p><p><br>Qiang Wang, Yi Zhu, Qiuyang Wu, Eric Gratz, Yan Wang, Low Temperature Electrolysis for Iron Production via Conductive Colloidal Electrode, RSC Adv., 2015, 5, 5501-5507. </p><p><br>Qiang Wang, Jianming Zheng, Eric Walter, Huilin Pan, Dongping Lv,Pengjian Zuo, Honghao Chen, Z. Daniel Deng, Bor Yann Liaw, Xiqian Yu, Xiaoqing Yang, Ji-Guang Zhang, Jun Liu, and Jie Xiao, Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries, J. Electrochem. Soc., 2015, 162(3), A474-A478.</p><p> <br>Qiang Wang, Dong Zheng, Meaghan E McKinnon, Xiao-Qing Yang, Deyang Qu, Kinetic Investigation of Catalytic Disproportionation of Superoxide Ions in the Non-aqueous Electrolyte Used in Li–air Batteries, J. Power Source, 2015, 274, 1005-1008. </p><p><br>Qiang Wang, Xiao-Qing Yang, Deyang Qu, In-situ ESR Electrochemical Investigation for Oxygen Reduction in Non-aqueous Electrolyte, Carbon, 2013, 61, 336 -341. </p><p><br>Qiang Wang, Chuan-Sin Cha, Juntao Lu and Lin Zhuang, Ionic Conductivity of Pure Water in Charged Porous Matrix, ChemPhysChem, 2012, 13, 514 -519. </p><p><br>Qiang Wang, Chuan-Sin Cha, Juntao Lu, Lin Zhuang, The Electrochemistry of “Solid/Water” Interfaces Involved in PEM-H2O Reactors. Part I. The “Pt/Water” Interfaces, Phys. Chem. Chem. Phys., 2009, 11, 679-687. </p><p><br>Ming Liang, Dawei Song, Hongzhou Zhang, Xixi Shi, Qiang Wang, and Lianqi Zhang, Improved Performances of LiNi0.8Co0.15Al0.05O2 Material Employing NaAlO2 as a New Aluminum Sources, ACS Appl. Mater. Interfaces, 2017, 9(44), 38567–38574. </p><p><br>Joseph Heelan, Eric Gratz, Zhangfeng Zheng, Qiang Wang, Mengyuan Chen, Diran Apelian, Yan Wang, Current and Prospective Li-ion Battery Recycling and Recovery Processes, JOM, 2016, 68(10), 2632-2638. </p><p><br>Honghao Chen, Samuel Cartmell, Qiang Wang, Terence Lozano, Z. Daniel Deng, Huidong Li, Xilin Chen, Yong Yuan, Mark E. Gross, Thomas J. Carison, Jie Xiao, Micro-battery Development for Juvenile Salmon Acoustic Telemetry System Applications, Sci. Rep., 2014, 4, 3790. </p><p><br>Dong Zheng, Qiang Wang, H. S. Lee, Xiao Qing Yang, Deyang Qu, Catalytic Disproportionation of the Superoxide Intermediate from the Electrochemical O2 Reduction in Non-aqueous Electrolytes, Chem. Eur. J, 2013, 19, 8679-8683</p><p>. <br>Hongliang Huang, Qiang Wang, Chuan-Sin Cha, Juntao Lu, Lin Zhuang, A Reference Electrode System for Electrochemical Measurement in Pure Water, Electroanalysis, 2011, 23, 577-582. </p><p><br>Cha Chua-Sin, Huang Hong-Liang, Wang Qiang, Analysis on the Thermodynamic Stability of Noble Metal and Valve Metal Elements in PEM-water Electrochemical Reactors by Applying the pH-potential-stability Diagrams Method, Chem J Chinese U, 2008, 29, 2479-2483.</p></div>Energy Storage Technologyhttps://bios.inl.gov/BioPhotos/Qiang%20Wang%20Portrait%20(1).JPG<div class="ExternalClass64F32864884F4490969A39A360D82F37"><p><a href="https://www.linkedin.com/in/qiang-wang-b487845b/">​Linkedin</a></p></div>Senior staff engineer/scientist
Timothy Penningtonhttps://bios.inl.gov/Lists/Researcher/DisplayOverrideForm.aspx?ID=806Timothy PenningtonTimothy Pennington is a Senior Research Engineer in the Energy Storage & Advanced Transportation department of Idaho National Lab. Tim serves as the Principle Investigator for Department of Energy – Vehicle Technology Office funded projects and leads a team developing research tools to investigate Electric Vehicles’ (EV) interactions with the electric grid and charging infrastructure. He also conducts research on charging hardware to enable future EV charging capabilities including extreme fast charging, high power wireless charging, and heavy duty vehicle charging. Tim holds a B.S. from the Massachusetts Institute of Technology and a MSc from the University of Southampton (UK), and previously led Department of Defense research and technology demonstration projects.<div class="ExternalClass30B6E54657184FC5935DB65078402D63"><p>​M.S., Maritime Engineering, University of Southampton<br>B.S., Ocean Engineering, Massachusetts Institute of Technology</p></div><div class="ExternalClassBE79979FE5424F91839E67A052152D39"><p>​Electric Vehicles<br>EV and Grid Integration<br>National Defense Systems<br>Autonomy & Robotics</p></div><div class="ExternalClass30462C63F0EC4D95A76F27DCBA4EFF83"><p>​Balasuriya A., Pennington T., Scudere A., McCann M., Thayer R., and Wronski R. (2017)“Development of an autonomous mobile marine meteorological station — SWIMS.” Proceedings of OCEANS<br>Conference, IEEE.</p><p><br>Cooney L., Stanway M.J., Augenbergs P., Brundage H., Downey B., Pennington T., Stefanov-Wagner T., and Tobias D. (2006) “Design of an Acoustic-Homing Autonomous Surface Vessel.” Proceedings of OCEANS<br>Conference, MTS/IEEE.</p><p><br>Yandell A., Austin-Breneman J., Brett B., Brundage H., Downey J., Fantone S., Pennington T., Sheppard S., Stanway M.J., and Stefanov-Wagner T. (2003) “Design of a Roller-Collector Remotely Operated Vehicle.”<br>Proceedings of OCEANS Conference (pp. 2784-2790) MTS/IEEE.</p></div>Infrastructure and Energy Storagehttps://bios.inl.gov/BioPhotos/Pennington_P-10574-1.JPG<div class="ExternalClass5901C31BC8EC49C5B46CCC8AE695B280"><p>​<a href="https://www.linkedin.com/in/timothy-pennington-7b121b31">Linkedin</a></p></div>Senior Research Engineer in the Energy Storage & Advanced Transportation

​​