A Data-Driven Framework for Residential Electric Vehicle Charging Load Profile Generation

Zonggen Yi, Don Scoffield

August 2018 - Residential electric vehicle charging load profile is indispensable to achieve reliable control strategies for mitigating negative effects on power distribution system due to emerging electrified transportation. This paper introduces a data-driven framework of charging load profile generation for residential plug-in electric vehicles. Real world historical residential charging behavior data is utilized to construct empirical charging decision making model by using machine learning algorithm. A multiple channels method with kernel density estimation is proposed to construct probability density functions for estimating charging duration based on parking duration. A generation algorithm considering parking time and travel demand dependency is introduced to generate residential charging behaviors. This framework is extensible to generate various charging load profiles and simulate varied residential charging scenarios under different number of households and charging rates. This will be crucial for designing and validating residential charging control strategies.

Journal Link