Energy Impact Evaluation for Eco-routing and Charging of Autonomous Electric Vehicle Fleet: Ambient Temperature Consideration

Zonggen Yi, John Smart, Matthew Shirk

April 2018 - This paper studies the heterogeneous energy cost and charging demand impact of autonomous electric vehicle (EV) fleet under different ambient temperature. A data-driven method is introduced to formulate a two-dimensional grid stochastic energy consumption model for electric vehicles. The energy consumption model aids in analyzing EV energy cost and describing uncertainties under variable average vehicle trip speed and ambient temperature conditions. An integrated eco-routing and optimal charging decision making framework is designed to improve the capability of autonomous EV’s trip level energy management in a shared fleet. The decision making process helps to find minimum energy cost routes with consideration of charging strategies and travel time requirements. By taking advantage of derived models and technologies, comprehensive case studies are performed on a data-driven simulated transportation network in New York City. Detailed results show us the heterogeneous energy impact and charging demand under different ambient temperature. By giving the same travel demand and charging station information, under the low and high ambient temperature within each month, there exist more than 20% difference of overall energy cost and 60% difference of charging demand. All studies will help to construct sustainable infrastructure for autonomous EV fleet trip level energy management in real world applications.

Journal Link