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Abstract 

An appropriate charging infrastructure is one of the key aspects needed to support the mass adoption of 

battery electric vehicles (BEVs), and it is suggested that publically available fast chargers could play a key 

role in this infrastructure. As fast charging is a relatively new technology, very little research is conducted 

on the topic using real world datasets, and it is of utmost importance to measure actual usage of this 

technology and provide evidence on its importance to properly inform infrastructure planning. 90,000 

fast charge events collected from the first large-scale roll-outs and evaluation projects of fast charging 

infrastructure in the UK and the US and 12,700 driving days collected from 35 BEVs in the UK were 

analysed. Using regression analysis, we examined the relationship between daily driving distance and 

standard and fast charging and demonstrated that fast chargers are more influential. Fast chargers 

enabled using BEVs on journeys above their single-charge range that would have been impractical using 

standard chargers. Fast chargers can help overcome perceived and actual range barriers and make BEVs 

more attractive to future users. At current BEV market share, there is a vital need for policy support to 

accelerate the development of fast charge networks. 

Key words: Electric Vehicles; EV charging infrastructure; Fast charging; Rapid charging; Quick charging; 
User behaviour. 

1. Introduction 

The transport sector is responsible globally for approximately one quarter of the total energy-related 

greenhouse gas emissions, with over 70% of these emissions attributed to road transport. To reduce 

transport related emissions, sustainable mobility plans of many governments worldwide include the need 

for a substantial shift towards the use of ultra-low carbon emission vehicles such as battery electric 
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vehicles (BEVs)(IEA, 2016; Sims, 2014). For instance, the Paris Declaration on Electro-Mobility and Climate 

Change calls for the global deployment of 100 million electric cars across all market segments by 2030(IEA, 

2016; UNFCCC, 2015). However, recent (2015) electric car stock figures have only reached 1.26 million1 

cars globally (IEA, 2016) indicating the need for a substantial market growth. The low market share of 

BEVs is explained by several barriers to adoption such as high purchasing cost compared to an equivalent 

liquid-fuel vehicle, limited driving range and the lack of an appropriate charging infrastructure. Policies 

are implemented in many countries to increase the attractiveness of EVs and potentially their adoption 

rates (Sierzchula et al., 2014; Silvia and Krause, 2016). These policy mechanisms include providing financial 

incentives such as purchase subsidies and non-financial incentives such as access to bus lanes, free or 

dedicated parking spots; raising awareness on EVs; and supporting the development of EV charging 

infrastructure (Coffman et al., 2017; Egbue and Long, 2012; IEA, 2013; Langbroek et al., 2016; Steinhilber 

et al., 2013).   

Recent studies assessed the impact of policy mechanisms on EV adoption. One important finding is that 

policy interventions may yield different impacts across different groups of people (for example, early 

adopters versus mainstream consumers), indicating the need for a targeted intervention 

approach(Langbroek et al., 2016; Silvia and Krause, 2016). In addition, Langbroek et al.(2016) found that 

access to bus lanes and free parking are an efficient alternative to expensive subsidies; however, these 

kind of incentives must be in place temporarily to avoid crowding ( e.g. many cars in the bus lane) that 

can make these policies less attractive and could also cause unwanted side effects ( e.g. encourage driving 

instead of using public transport). Moreover, the authors emphasised the importance of informative 

interventions that could encourage more people to consider an EV, such as helping people differentiate 

between their perceived and actual travel patterns. Similarly, Silvia and Krause (2016) recognised the 

importance of increasing awareness on EVs; moreover, they found that policy interventions perform 

considerably better when implemented synergistically rather than in isolation. An awareness-related 

policy strategy is described by Matthews et al. (2017); the authors analysed data collected by trained 

mystery shoppers and demonstrated the importance for policy makers to recognise the influential role 

market intermediaries such as car dealerships have in encouraging the adoption of BEVs. An example of 

an awareness campaign is the new national Go Ultra Low (GUL) campaign, a joint collaboration between 

the UK government and vehicle stakeholders. GUL aims to increase purchase consideration of EVs by 

helping potential users understand the benefits, cost savings and capabilities of available EV models on 

                                                           
1 740,000 Battery Electric Vehicles 
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the market (Go Ultra Low, 2017). While many studies found that the presence of a public charging 

infrastructure is positively correlated with EV adoption rates, it is important to note that the direction of 

causality is not clear(Coffman et al., 2017; Mersky et al., 2016; Sierzchula et al., 2014). Coffman et al. (2017) 

reviewed recent studies assessing factors affecting EV adoption and found that public charging 

infrastructure is an important factor associated with EV uptake. Specifically, Sierzchula et al. (2014) 

examined the relationship between several socio-economic factors and 30 national EV market shares for 

2012 and found that charging infrastructure was most strongly related to EV adoption. Looking at the 

country with the highest market share of EVs, Mersky et al. (2016) investigated the effects of several 

incentives on per capita EV sales in Norway and found that pricing incentives and increased access to 

charging stations may be the best policies to increase EV sales.  

A public network of fast 2  chargers is argued to be a key component of an overall BEV charging 

infrastructure (Cruz-Zambrano et al., 2013; Jochem et al., 2016; Schroeder and Traber, 2012). Indeed, 

Nilsson and Nykvist (2016) investigated the near term interventions needed to enable a BEV breakthrough 

over the next 15 years in the EU and recognised that the availability of public fast charging is an important 

signal for consumers and it will support BEV growth. Unlike conventional slow charging stations that take 

hours to recharge a vehicle, current 50kW fast charging stations can recharge a BEV from an empty battery 

to about 80% of full state of charge (SoC) in 20 to 30 minutes (DBT, 2013). Fast charging is a relatively new 

technology that barely existed for public use before 2013 (IEA, 2016) and it is of utmost importance to 

measure the usage of this technology, understand individuals’ behaviour, and provide actual evidence on 

the significance of this infrastructure. This can appropriately inform the expansion and planning of the 

BEV charging infrastructure and inform subsequent studies on the topic. 

Using assumptions instead of real world behaviour datasets, some studies assessed the business models 

for fast charging infrastructure to guide prospective investment. Profiling charging demand is critical in 

evaluating the profitability of BEV fast charging infrastructure business (Schroeder and Traber, 2012) and 

yet because of the lack of real-world data, assumptions had to be used when assessing the business case 

for this technology(Madina et al., 2016; Parasto Jabbari and Don MacKenzie, 2016; Pierre Ducharme and 

Catherine Kargas, 2016; Schroeder and Traber, 2012).  

Similarly, some studies used assumptions instead of real BEV charging behaviour data to investigate the 

                                                           
2 Terminology varies by location; it is called “fast” charging in the US, “rapid” charging in the UK and Europe, and 
“quick” charging in Japan. 
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impact of fast charging on the electricity grid. In particular, these studies assumed that all BEV charging 

takes place on fast chargers and did not consider that BEVs can be easily charged at home for most car 

owners (Jakobsson et al., 2016). One study adapted the arrival time distribution of conventional vehicles 

at petrol filling stations to determine a typical arrival time distribution of BEVs at the fast chargers; this 

study found that fast chargers would affect the quality of power supply (e.g. voltage dip, flicker) and 

actions such as deploying energy storage solutions need to be taken in order to avoid these quality 

issues(Yunus et al., 2011). Another study found that fast charging has the potential to quickly overload 

local distribution equipment at peak times(Etezadi-Amoli et al., 2010) and even cause failure in lines and 

transformers unless the size and location of fast chargers are modified to avoid these impacts(Sadeghi-

Barzani et al., 2014).  

Using real world datasets, one study investigated the impact of the availability of fast charging on people’s 

assessment of electromobility and found that the participants’ attitudes towards BEVs improved when 

they used a fast charger. While the results indicated the importance of such an infrastructure in 

encouraging the uptake of BEVs, they were based on an experiment that exposed 62 participants who 

don’t own a BEV to a fast charge event(Gebauer et al., 2016). Morrissey et al. (2016) analysed charging 

infrastructure data for the whole of Ireland including 11,000 fast charge events from 83 fast chargers. An 

interesting finding from the Irish study is that the mean energy consumption for fast chargers at car parks 

was 7.27 kWh per charge event which is similar to the mean recorded for standard public car park chargers 

at 6.93 kWh. While Morrissey et al. (2016) provided a preview of how BEV drivers are using fast chargers, 

their work did not investigate if fast chargers have an impact on driving behaviour. 

This paper has two objectives. The first objective is to measure the real world usage of fast chargers by 

analysing over 90,000 fast charge events collected from the first large-scale roll-outs and evaluation 

projects of fast charging infrastructure to date in both the UK and the US. Similar trends from two distinct 

geographical locations were identified. This could indicate the widespread applicability of the results 

which may be transferable as lessons learnt to other geographic locations and assist in the rollout of future 

infrastructure. In addition, the findings based on real world datasets can inform theoretical assumptions 

used on fast charging and assist in more robust findings of subsequent studies on topics such as economic 

feasibility of fast charge infrastructure and impact on the electricity networks. 

The second objective is to explore the impact of fast chargers on driving behaviour, specifically on driving 

distance, in order to evidence the importance of fast chargers. This was done by analysing 18,000 charge 
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events from all types of charging infrastructure and 67,000 trips collected from data loggers installed in 

35 BEVs that accessed and used fast chargers.  

Following the introduction, section 2 presents the datasets and methods used for the analysis, section 3 

presents the results of the analysis of the actual usage of fast chargers specifically time of use, duration 

and energy transferred during fast charge events. Using a multiple linear regression, section 4 explores 

the influence of fast charging on daily driving distance. Finally, the discussion on the importance of fast 

chargers is presented in Section 5 and the conclusion and policy implications are presented in Section 6. 

2. Data Collection and Methods 

In this paper, we use three sources of data relating to fast charge infrastructure and BEVs. One dataset is 

collected from a network of fast chargers in the UK, a second dataset is collected from a number of BEVs 

in the UK that had access and used this network of fast chargers. Finally, a third dataset is collected from 

a network of fast chargers in the US. These datasets and the analysis methods are described below in 

more details. 

2.1. Fast charge infrastructure data collection (UK and US) 

2.1.1. UK fast charge infrastructure 

Over 30,000 fast charge events were collected from 51 fast chargers (50kW) over a period of 17 month 

between July 2014 and November 2015 in the UK. The fast chargers are part of the Rapid Charge Network 

(RCN) project that was co-financed by the European Commission (INEA, 2015) with the aim to cover Trans-

European Transport Network (TEN-T)3 roads with charging infrastructure. As such, the location of the fast 

chargers were determined to ensure that these strategic European roads (full length of Priority Project 

(PP) Road Axes 13 and 26 through the UK and into Ireland) are covered with BEV charging infrastructure 

(Figure 1). 76% of the RCN chargers were installed at motorway service stations with the remaining points 

installed at fuel filling stations, airports, seaports, Park and Rides, hotels and large retail stores to enable 

a fully connected route covering over 1,000km. The fast chargers were accessible to anyone with a BEV 

and an access card. Data collected from each charging transaction contained information on the start time 

of a charge event, duration and energy transferred during the transaction. Due to privacy issues, the 

                                                           
3The Trans-European Transport Networks (TEN-T) are a planned set of road, rail, air and water transport networks in 
the European Union. 

https://en.wikipedia.org/wiki/European_Union
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dataset did not contain details on the network users. More details on the RCN project can be found in the 

project final report (Neaimeh et al., 2015). 

 
Figure 1. Location of RCN fast chargers covering two European strategic roads (Priority Axis number 13 and 26 roads). 

2.1.2. US fast charge infrastructure 

Over 62,000 fast charge events were collected from 106 fast chargers (50kW) over a period of 18 months 

between April 1, 2012 and September 30, 2013 in the US. The fast chargers were deployed as part of The 

EV Project which was funded by the United States Department of Energy through the American Recovery 

and Reinvestment Act and private sector partners. The fast chargers were located in and around the major 

metropolitan areas shown in Figure 2. Half of the chargers were in locations that could serve highway 

travel. A charger was deemed capable of serving highway travel if it was less than a one-mile drive from 

a highway. Since these chargers were also located in metropolitan areas, it is expected that they are used 

for a mixture of local travel and highway travel, but the exact proportion of each is unknown. Anyone with 

a BEV capable of fast charging could use the chargers. Similarly to the UK dataset, each charging 

transaction collected from the US fast charge network contained information on the start time of a charge 

event, duration and energy transferred. Again, the dataset did not contain details on the users who used 

the fast chargers. More information on The EV Project, the largest plug-in electric vehicle infrastructure 

demonstration in the world, can be found in this project report(Idaho National Lab, 2015).  
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Figure 2.Locations and numbers of fast chargers installed by The EV Project 

2.2. Battery electric vehicles data collection (UK) 

For in-depth monitoring of driving and charging behaviour beyond what can be measured using the data 

from a fast charge network, high resolution data were collected from a selected number of BEVs in the 

UK. A 200GBP voucher was offered to attract BEV drivers to participate in the data collection and over 

120 BEV drivers expressed interest in participating. The 35 selected BEVs were privately owned and their 

users were able to access the RCN fast chargers (i.e. live or work within a BEV driving range of the network) 

and expressed that they will be using the electric car as their primary vehicle. The participants owned their 

vehicles for at least 3 months before data collection began to ensure their familiarity with their BEV.  

Age and income of the drivers participating in the BEV data collection trial were compared to the UK 

population demographics, and as expected the profile of these drivers is similar to the profile of BEV early 

adopters. First, the age groups of the sample were compared to the age groups of the UK population 

holding a valid driving license (Department for Transport, 2016a; Office for National Statistics, 2016). 

There were no participants younger than 21 years old (2% nationally), 10% were between 21-29 years old 

(15% nationally), 37% were between 30-39 years old (17% nationally); 33% were between 40-49 years old 

(21% nationally); 10% were between 50-59 years old (17% nationally); 7% were between 60-69 years old 

(15% nationally) and 3% were 70 or above (13% nationally). Second, the income of the participants was 

compared to the average annual gross income of all households grouped by quintiles (Office for National 

Statistics, 2017). No participants belonged to the bottom quintile where the national average gross 
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income is 14,765 GBP. 6.5% of the participants belonged to the second quintile (national average gross 

income is 23,509GBP). 10% belonged to the third quintile (national average gross income is 33,820 GBP), 

23% belonged to the 4th quintile (national average gross income is 48,008 GBP) and 61% of the 

participants belonged to the top income quintile group where the national average gross income is 87,625 

GBP. Moreover, over 90% of the participants were Male. Previous studies identified some of the 

characteristics of individuals who would mostly fit early adopters and found that early adopters tend to 

be men, with high income level and aged between 25 and 59 years old (Campbell et al., 2012; Kawgan-

Kagan, 2015; Tran et al., 2013) which is similar to what we found about the RCN trial participants.  

The cars of the participants comprised of 29 Nissan LEAFs (24kWh battery, 200km driving range) and 6 

Renault ZOEs (22kWh battery, 240km driving range). The advertised driving range of these vehicles were 

obtained from laboratory testing and over-estimate real world driving ranges. A realised driving range of 

a BEV is influenced by factors such as speed and use of auxiliary power and it is estimated that the realised 

range of a 24kWh LEAF won’t exceed 150km (Neaimeh et al., 2013; Needell et al., 2016). The cars were 

fitted with data logging devices (logger, GPRS and GPS antenna) to monitor driving and charging behaviour 

of their users. These loggers provided up to second by second data allowing the project to monitor how 

the vehicles were driven, where and when they were charged and how much energy was consumed. The 

data collected included the timestamp, GPS coordinates, state of charge, speed of the vehicle, battery 

current, battery voltage and ambient temperature. As an example, the GPS coordinates collected during 

a trip were used to calculate the distance travelled. The GPS coordinates during a charge event were used 

to determine the location of this charge event (i.e. home, work, public, public-fast). In more details, the 

charge events’ GPS information from the data loggers was correlated with the addresses of any private 

location that the users might charge at (e.g. home, work)4; and with the addresses of all the public 

chargers in the UK using the information available in the national charge point registry (OLEV, 2012). The 

data loggers collected over 18,000 charge events (from all charging infrastructure) and 770,000 kilometres 

driven in over 67,000 trips over a period of 18 month between February 2015 and July 2016. In total, this 

resulted to around 12,700 driving days (a day when the vehicle was driven) with 12% of these days 

included one or more fast charge event. The users contributed a similar number of driving days each, with 

an average of 3% driving days per participant and a standard deviation of 0.67%.  

                                                           
4 Participants in the trial provided the postcodes of the private locations where they might charge (e.g. home, 
work, parents or friends’ house). “Other” indicate when these users charged at a different private location than 
previously disclosed. 
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More information on the driving and charging patterns of the users is presented. On average, the users 

drove on 83% of the days during the trial (i.e. almost 6 days per week) and the standard deviation was 

11%. Figure 3 shows the daily distances recorded in the trial for each of the 35 users grouped in boxplots. 

The boxplots compactly display the distribution of daily distances. The bottom edge of the box is the 25th 

percentile of the data (value below which 25% of the observations are found). The top edge of the box is 

the 75th percentile of the data. The horizontal bold line inside the box is the median (50th percentile of 

the data) and it ranges between 20km and 113km for these 35 drivers. It is noticed that there is a variation 

in daily distances recorded and most of the events are under 150km (realised range of the BEVs in this 

trial). The few daily events over 150 km are spread among the users.  

 
Figure 3: Distribution of daily distance for each of the 35 BEV participants on the trial. 

Figure 4 shows the distribution of daily distances grouped for all users, with a median of 50km and a mean 

of 61km per day. The average daily distance captured from this group of drivers was higher than the UK 

National Travel Survey (NTS) average daily distance of 43.47km (Department for Transport, 2015a). The 

distribution of daily distances and the percentage of days the cars were driven during the study period 

indicated that the participants used the BEV as their primary car, confirming what they stated in the user 

selection survey. 5% of the days captured in the data set included long journeys of more than 150km and 

the highest recorded daily distance was 610km. When comparing with the UK NTS average daily distance, 

a remarkable similarity is found with 5% of daily distance using conventional vehicles in the UK is above 

150km (Department for Transport, 2015a). As noted in the previous paragraph, daily driving over 150Km 

is above the actual single-charge driving range of the vehicles being tested and would require recharging 

during that day. It is worth noting that the participants indicated that they had access to a second vehicle 

(conventional liquid-fuel car) in their household, but, as shown here, they did not avoid the BEV in favour 
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of the conventional car to go on the long journeys that were above the single-charge range of the BEV.  

 
Figure 4.Distribution of daily driving distance on the RCN data logger trial. 

For more information on charging behaviour, Figure 5 shows the proportion of energy transferred on fast 

chargers for the whole trial for each of the 35 users. The x-axis shows the median daily driving distance 

for each user (same information shown by the boxplots’ bold lines in Figure 3). It can be noticed that most 

of these 35 participants used the fast chargers that they had access to, with one participant (f4527) relied 

on fast chargers for 78% of their BEV’s total charge energy demand. Five participants used fast charging 

for less than 1.5% of their total charge energy requirements including one user (f4535) who did not use 

fast charging at all.  
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Figure 5. Median daily distance and proportion of fast charge energy for the 35 BEV users 

Figure 6 shows the breakdown of the total charge energy by location for the 35 participants with over 72% 

of the charging energy transferred at home and 12% transferred on fast chargers. These users 

predominately relied on home charging which is aligned with previous studies on BEV charging behaviour 

(Morrissey et al., 2016; Pearre et al., 2011) and indicate that the charging behaviour of this group of users 

is not dissimilar to what previous studies have found. 

 
 
Figure 6.Energy breakdown by location of 18,000 charge events on the UK BEV trial. 
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2.3. Analysis methods 

The first objective of this paper is to analyse fast chargers’ usage in the UK and the US. Descriptive analysis 

and plots were used to visualise results on the time of use of fast chargers, duration and energy 

transferred per fast charge event. The second objective of this paper is to analyse the driving distance of 

a group of BEV users who had access and used fast chargers. In addition to some descriptive analysis, 

multiple linear regression was conducted for a more detailed study on the driving behaviour of these BEV 

drivers. For the regression, the outcome variable was daily distance and the predictors were daily standard 

charge and fast charge energy. Multiple regression is used in two distinct applications: prediction and 

explanation (Courville and Thompson, 2001; Faraway, 2016). For this work, the more interesting use of 

multiple regression is for the explanation of the contribution of each predictor (standard charge energy, 

fast charge energy) to daily distance. This allows the identification of which predictor is relatively more 

important than the other- which what is typically meant by the relative importance of predictors in 

multiple regression (Johnson and Lebreton, 2004).  

Many metrics exist to assess the individual predictor’s importance in a model. A most typical approach of 

assessing importance is to examine the magnitude of the standardized regression coefficients associated 

with each predictor, where predictors with larger coefficients are viewed as more important than those 

with smaller weights. However, other methods for establishing predictor importance are more accurate 

(Braun and Oswald, 2011; Calbick and Gunton, 2014) and for this work, Lindeman, Merenda and Gold (lmg) 

method in the Relaimpo package in R is used to assess predictor’s importance (Groemping, 2006). For this 

method, the relative importance of a predictor is defined as the proportionate contribution each predictor 

in a linear multiple regression model makes to the model coefficient of multiple determination, R2, 

considering both the unique contribution of each predictor by itself and its incremental contribution when 

combined with the other predictors (Groemping, 2006; Johnson and Lebreton, 2004). All the relative R2 

sum to the model R2. 

Since the collection of new (or fresh) data from the BEV users beyond the trial period was not possible, 

resampling was used instead to investigate the model’s performance. Resampling methods can produce 

reasonable predictions of how well the model will perform on future data(Kuhn and Johnson, 2013). 

Resampling consists of using a subset of the data to fit a model and using the remaining data to estimate 

the efficacy of the model. This process is repeated many times and the results are aggregated and 

summarised (Kuhn and Johnson, 2013). The resampling method used in this work is called “repeated 10-
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fold cross-validation” where the dataset is randomly partitioned into 10 sets of roughly equal size. A model 

is fit using all the dataset except for the first set (called the first fold). The data points in this first set (i.e. 

daily distance) are predicted by this model and used to estimate performance measures (e.g. R2). The first 

set is returned to the dataset and the process repeats with the second set held out and so on until the 

tenth set. The 10 resampled estimates of performance are summarised usually with the mean and 

standard error (Kuhn and Johnson, 2013). 

There were 23 data points out of 12,700 between 400 and 600km; in order to ensure that this small 

number relative to the remainder of the data did not have a disproportionately high influence on the 

regression analysis, robust regression was explored. Ordinary least squares (OLS) regression can be 

sensitive to unusual data (e.g. outliers and high leverage points). Robust regression is an alternative to 

OLS regression when the data contain potentially influential observations. The robust regression is done 

by iterated re-weighted least squares (IRLS) and the idea is to down-weight or ignore unusual data (Fox 

and Weisberg, 2010).These data points were deemed valid and weren’t data entry errors, nor were they 

from a different population than most of our data5. Therefore, we had no compelling reason to exclude 

them from the analysis. In this work, the robust regression implements M-estimation with Huber 

weighting where observations with small residuals get a weight of 1 and the larger the residual, the 

smaller the weight (Faraway, 2016; Fox and Weisberg, 2010). 

3. Measuring the Usage of Fast Chargers 

3.1. Energy transferred during fast charge events 

The distribution of AC charging energy from the RCN chargers is shown in Figure 7 (top). The AC kWh 

numbers correspond to how much energy was drawn from the grid (AC). The amount of energy delivered 

to the vehicles’ batteries was not collected, but it could be estimated to be around 90% of the AC energy 

from the grid, due to charger inefficiency (Idaho National Lab, 2016). In the UK, the average and median 

energy transferred per charge event were 9.2 AC kWh and 7.9 AC kWh respectively. The average and 

median energy used per charge event from EV Project fast chargers were 9.2 and 9.3 AC kWh respectively. 

The distribution of AC charging energy from EV Project chargers is shown in Figure 7 (bottom). The results 

from the US and the UK show similar trends and corroborate the findings from the Irish fast charge 

network roll-out that found that the average fast charge energy consumption is 8.32kWh (Morrissey et 

                                                           
5 Details of the 610km driving day with 7 fast charge events are shown in the RCN final report 
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al., 2016). These results show that typical energy transfer on fast chargers is approximately half of the 

vehicle battery capacity6. It is worth noting that the amount of energy transferred is dependent on 

duration of charging and initial battery state of charge, due to the fact that at higher state of charge, 

charging power will decrease (Idaho National Lab, 2016).  

 
Figure 7.AC energy transfer during charges on the RCN project (top) and The EV Project fast chargers (bottom) 

The distribution of actual energy usage on fast chargers is significant for subsequent studies investigating 

the impact of fast charging on the electricity grid and studies developing a business case for such an 

infrastructure and would need to be aware of the ranges of energy used per charging transaction. As an 

example, the queue model developed by Parasto Jabbari and Don MacKenzie (2016) to investigate 

operators’ cost and access reliability of fast chargers could result in more accurate findings if the authors 

used real data instead of having to assume that each vehicle’s energy usage is 20kWh per charge event. 

                                                           
6 Around 10% of available battery capacity is dedicated to reserve limits in both cars ( LEAF and ZOE), dropping the 
available battery capacity to around 21kWh for the LEAF and 20 kWh for the ZOE 
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Similarly, assuming a full charge of the vehicle on fast chargers (Etezadi-Amoli et al., 2010; Sadeghi-Barzani 

et al., 2014; Yunus et al., 2011) instead of using measured data can result in overestimating the impacts 

on the electricity grid.  

3.2. Duration and time of use of fast charge events. 
In terms of transaction duration, the median recorded for fast charge events in the RCN was 24 minutes 

and the mean was just over 27 minutes as shown in Figure 8 (top). Transaction times in 32% of the 

recorded transactions were above 30 minutes. Charge events on EV Project fast chargers tend to be of 

similar duration, but slightly shorter than in the RCN. The EV Project fast charges shown in Figure 8 

(bottom) have median and mean duration of 21 and 22 minutes, respectively, and 21% of charges are 

longer than 30 minutes. After 30 minutes of charging on a fast charger, the vehicle battery will often be 

close to fully charged and charging will occur at a much slower rate to completely charge the battery. Long 

charges can severely impact charger availability and it is suggested that limiting the duration of a charge 

event could provide fairer access to the charger and reduce waiting times. Another alternative would be 

to introduce a rate structure for the charge event payment where it becomes more expensive after 30 

minutes. In general, there is a need to decrease the uncertainties associated with the availability of fast 
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charge infrastructure to allow journeys to be completed confidently and without significant increase in 

journey times.  

 
Figure 8.Distribution of charge duration from fast chargers in The RCN project (top) and The EV Project (bottom). 

While both datasets show a similar trend, there are some differences that can be noticed between the UK 

and the US. Much of these differences can likely be attributed to the difference in vehicles capable of 

using fast chargers, notably the Mitsubishi Outlander PHEV. The Outlander PHEV, a plug-in hybrid, is one 

of the most popular plug-in vehicles available in Europe, and it is not sold in the United States at the time 

of this writing. A full charge for the Outlander is 9.8kWh, which is approximately half the capacity of most 

BEVs in the United States. The Outlander can be fast charged for an 80% charge (up to 7.8kWh) in 

approximately 25 min (Mitsubishi UK, 2017). Fast charging of this vehicle likely contributes to a large 

number of events from the RCN with energy between 6 and 8kWh (over 20% of the UK dataset) and the 

associated 20 to 25 minutes charging duration. Many of the RCN participants had recommended 
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discouraging unnecessary usage of the fast chargers by plug-in hybrids with small batteries and internal 

combustion engines due to the fact that BEV users might need them more urgently.  

Finally, fast chargers in the RCN and The EV Project have similar usage profiles. As expected, the majority 

of fast charge events took place during the day. Over 50% of charges began between 11:00 and 18:00, 

and very little use occurred between midnight and 6 AM (Figure 9). The vertical lines on the graphs delimit 

50% of the data. Similarly to the importance of information on energy transferred, knowing when the 

chargers are being used is relevant for grid impact studies and significant for studies trying to develop a 

business case, as revenue generation opportunities will vary throughout the day.  

 

 
Figure 9.Distribution of fast charge start times from The RCN project (top) and The EV Project (bottom). 
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4. Investigating the Impact of Fast Chargers on Driving Distance 

The analysis in this section is based on a group of 35 BEV drivers who had access and used fast chargers. 

Over 12,700 driving days associated with these 35 drivers were analysed with 12% of these days included 

one or more fast charge event and in total 11.9 % of the total charging energy was transferred on fast 

chargers (Figure 6). At first, the analysis involves graphical representation of the data to identify general 

trends, then statistical models are fitted to the data for a more robust analysis.  

4.1. Graphical exploration of driving distance and fast charging 

The relationship between daily distance and the number of daily fast charge events is shown in Figure 10. 

The graph displays the mean daily distance at different numbers of fast charge events performed in a day, 

and the confidence intervals of those means based on bootstrapping. It can be seen that there were days 

when drivers used fast charging infrastructure multiple times and it can be appreciated that the 

relationship between fast charging and increased daily distance is obvious.  

 
Figure 10: Relationship between daily distance travelled and fast charge events 

Similarly, the positive relationship between driving distance and number of fast charge events can be 

strongly identified when aggregating the data by weekly events. The data were separated in three groups, 

each represented by a boxplot (Figure 11) with the median weekly driving distance increasing with an 
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increase in the number of fast charge events. The number of observations for each group is indicated on 

the graph. 

 
Figure 11: Weekly driving distance and weekly number of fast charge events 

4.2. Evidencing the role of fast chargers in enabling driving 
distances above the single-charge range of BEVs. 

The graphical exploration of the data in Section 4.1 indicated a relationship between fast charging and 

increased driving distance. A robust analysis of this relationship is carried out using multiple regression 

where daily distance is predicted from standard charge energy and fast charge energy. The regression 

results, described in the following sections, showed that both predictors have a statistically significant and 

positive effect on daily distance at over 95% confidence level (see table 2) and fast charging was 

determined to be more influential than slow charging.  

4.2.1. OLS and robust linear regression results 

A few observations with either high leverage or large residuals were identified as possibly problematic to 

the model. The mean daily distance for these observations was 430km. Robust regression was carried out 

to deal with these potentially influential observations that could be problematic when using a simple 

ordinary least squares regression. Figure 12 shows that the predicted values from the linear model and 

the predicted values from the robust linear model fall on a straight line indicating the similarities between 
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the models, also evident in Table 1. The R2 statistic is not given in the context of a robust 

regression(Faraway, 2016). 

 
Figure 12: Predicted values of the OLS regression and predicted values of the robust regression  

 
Beta values OLS Linear 

Model 
Robust Linear Model 
using Huber Weights 

Intercept (b0) 26.28 24.64 
b1 2.67 2.78 
b2 5.58 5.54 

Table 1.Comparison between linear and robust linear models 

The results of the robust regression were similar to the OLS regression (Figure 12, Table 1) and as such, 

the analysis in this work will be based on the OLS linear model. 

4.2.2. Overall fit of the model, cross validation and model parameters 

To assess how well the multiple regression model fits the data, we look at the values of the coefficient of 

multiple determination-R2 and the F-ratio of the model outcome (Field et al., 2012). R2 is a measure of 

how much of the variability in the outcome is accounted for by the predictors. For this model, the adjusted 

R2 = 0.64 and as such 64% of variation in daily distance can be explained by daily standard and fast charge 

energy. This also means that 36% of the variation in daily distance cannot be explained by daily charging 

energy alone. Second, we look at the value of the F-ratio that indicate how much variability the model can 

explain relative to how much it can’t explain. A good model should have a large F-ratio value and the 

statistical significance of this value should be assessed. For this dataset F is 11,180, which is significant at 

p-value<.001. Therefore, it can be concluded that the regression model results in significantly better 

prediction of daily distance than if we used the mean value of daily distance. In other words, the 64% of 

variance that can be explained is a significant amount. In short, this regression model overall predicts daily 
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distance significantly well.  

In the absence of a fresh dataset from the BEV drivers, resampling was used to examine the model’s 

performance. The mean of the 10 resampled estimates of performance (R2) is 0.635 which is almost the 

same as the R2 of the model used in this work. The standard error is 0.014. 

After looking at the overall fit of the model and realising that it significantly improves the ability to predict 

daily distance, the next part is to look at the b-values in the model outcome. Table 2 shows the estimates, 

standard error, t-value and p-value of these b-values. If a predictor is having a significant impact on the 

ability to predict the outcome, then its associated regression coefficient value (b-value) should be 

different than zero and large relative to its standard error (SE b). A t-test is used to determine whether 

the b-value is different from zero, where t-value=b-value/SE b. If the t-test is significant (if the value under 

the P column is less than 0.05) then the predictor is making a significant contribution to the model. The 

regression coefficients of this model are significantly different from 0 and we can conclude that standard 

charge energy and fast charge energy make a significant contribution (P <0.001) to predicting daily 

distance. 

 Adjusted R2 b SE b t-value P 
 0.64 
Constant (b0)  26.28 0.43 61.24 <0.001 
Standard Charge Energy (b1)  2.67 0.034 78.42 <0.001 
Fast Charge Energy (b2)  5.57 0.044 127.86 <0.001 

Table 2. Multiple Regression Report 

In the context of linear regression, the variance inflation factor (VIF) can be used to diagnose 

multicollinearity. The VIF indicates if there is a strong correlation between the predictors. If there is 

multicollinearity then the coefficient values are untrustworthy and makes it difficult to assess the 

individual importance of a predictor(Field et al., 2012). The square root VIF values of the predictors is 

1.000027 (<2) indicating that there is no multicollinearity between standard and fast charge energy.   

Finally, we used graphical analyses (histogram and scatter plot) to ensure that the data met expectations 

of linearity, homoscedasticity and normality.  

4.2.3. Relative importance of fast and standard charge energy 

It is interesting to look at the individual contribution of the predictors (standard charge, fast charge) in 

the model and identify which predictor makes a greater contribution to daily distance. The results of the 
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analysis indicated that fast charge energy most influence daily distance, explaining about 46% of the 

observed variation, while standard charge energy explains 18% of the variation. The sum of the 

proportionate contribution of each predictor is equal to the total R2 of the model (64%). Thus, fast charge 

energy is about 2.5 times as important as standard charge energy in predicting daily distance for BEV users 

who have access and use fast chargers.  

Furthermore, the model R2 and the proportionate contribution of each predictor to R2 was investigated in 

an incremental approach. The contribution of each predictor was measured at incremental daily distance 

values of 50km, starting with daily distance up to 50km per day and going to up to 600km per day. The 

results are shown in Figure 13. The values of proportionate R2 at daily distance (up to) 600km correspond 

to the values for the whole dataset.  

 

Figure 13.Proportionate contribution to R2 for fast and standard charge energy predictors. 

It can be noticed that standard charge energy is more important than fast charge energy up to daily 

distance =240km. After 240km, fast charge energy becomes more important. The findings from this 

multiple regression model, looking at the relative importance of predictors, demonstrate the importance 

of fast chargers in enabling driving distances beyond the single-charge range of a BEV. In other words, fast 

chargers become more important the farther we drive; their availability extended the BEV driving range 

and enabled driving distances that would have been otherwise impractical using standard (slow) chargers 
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with associated long recharging times.  

5. Discussion  

In this work, the regression model’s R2 is 0.64 which means that almost 2/3 of the variation in daily 

distance is explained by daily standard and fast charging. In addition, fast chargers are more influential 

than slow chargers (higher contribution to R2) and they start to become more important for journeys that 

are above 240km per day. Yet, journeys above 240km per day are rare, 1.5% were recorded on the RCN 

trial and 2% were recorded in the UK NTS dataset(Department for Transport, 2015a). It is clear then that 

the majority of daily driving can be met with current BEV models and standard slow chargers at private 

locations (i.e. home or work). This is aligned with previous studies that confirmed the suitability of existing 

BEV models to meet almost all of the users’ daily travelling needs (Greaves et al., 2014; Needell et al., 

2016; Pearre et al., 2011), even if relying only on slow night-time charging, suggesting that the BEV range 

is primarily a psychological barrier (Franke et al., 2012; Needell et al., 2016).  

While this raises the question on whether a fast charge infrastructure is required, especially that it is 

expensive to install, it is important that policy makers don’t interpret actual daily distance requirements 

as evidence against supporting the roll-out of a fast charge infrastructure.  

Without fast chargers, the transition from liquid-fuel vehicles to BEVs will be affected. First, it may be 

possible to overcome perceived range barriers with fast chargers. Fast chargers could provide assurance 

and comfort to reduce range anxiety and the perceived unsuitability of BEVs beyond short city driving. 

Second, fast chargers can add range quickly into a BEV to make the occasional long journeys possible. 

Consequently, a network of fast chargers might help overcome both these perceived and actual range 

barriers, making BEVs more attractive to potential buyers and helping to increase their adoption rates. 

We expand on both these points in the following paragraphs. 

Driver range anxiety is the fear of depleting the battery and therefore lack sufficient range to complete a 

trip. Range anxiety can lead to underutilizing the available range and limit the number of miles travelled 

in a BEV, even when the BEV is capable of adequately completing the required journey (Egbue and Long, 

2012; Jensen et al., 2014; Neubauer and Wood, 2014). This reduces the utility of BEVs that are then 

considered only suitable for short city driving and unsuitable for long journeys (Greaves et al., 2014). 

However, this paper provided evidence that drivers are using their BEVs to go on long journeys that are 

above the single-charge range of the vehicle and fast chargers were used to enable these long journeys. 
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This indicates the importance of fast charge infrastructure because their availability, and usage, allowed 

drivers to use a limited-range car on long journeys thought only possible using conventional liquid-fuel 

vehicles. These results are not intended to demonstrate that fast chargers promote or encourage long 

journeys; but instead that fast chargers enable long journeys that would have been impractical, if not 

impossible, using conventional slow chargers with associated long recharging times. The fast chargers 

helped reassure drivers about the possible driving range; and could help overcome range anxiety, and as 

a consequence make BEVs more attractive to potential buyers. Albeit the daily driving distances presented 

in this paper are based on a sample of 35 drivers that might not necessarily experience range anxiety, our 

participants have demonstrated that long journeys above the single-charge range of a BEV are possible 

with the availability of fast chargers. It is argued that some factors affecting the adoption of BEVs include 

public visibility and raising awareness of this technology(Coffman et al., 2017; Silvia and Krause, 2016). 

These findings can be communicated to potential buyers as a way to enhance the perception towards 

BEVs and their suitability to meet drivers’ needs; for example through car dealerships as suggested by 

Matthews et al. (2017) and as part of the UK GUL campaign. 

Second, when a car purchase is made, the customer wants to be able to make all their journeys, not just 

the majority of their journeys(Kempton, 2016). Even with BEVs with increased battery capacities (e.g. 

Chevrolet Bolt), a remaining small number of driving days won’t be met without recharging (Needell et 

al., 2016). In addition, not every household has access to an additional vehicle that will allow the 

occasional long journeys; in England, only one third of the households have access to two or more 

cars(Department for Transport, 2016a). A network of fast chargers could enable the occasional long 

journeys with limited time spent charging (for example, during a typical rest stop). 

Consequently, developing the BEV market to reduce emissions from road transport could be predicated 

on the availability of a fast charge network. Road transport accounts for 21% of the country’s CO2 

emissions and most of these emissions come from cars and light vans (Department for Transport, 2016b). 

The total distance travelled by cars and light vans in 2015 was 475 billion kilometres. It is worth noting 

that the Strategic Road Network, where the RCN chargers are installed, carried 144 billion kilometres in 

2015, almost one-third of all motorised traffic in England (Department for Transport, 2017). Road traffic 

is expected to rise in the coming years, predominately because of the projected growth in the population 

levels, and this growth is expected to be particularly strong on the Strategic Road Network, between 29% 

to 60% from 2010 to 2040 (Department for Transport, 2015b). During the period of study, The 51 RCN 

chargers delivered around 300 MWh of energy that approximately equates to 1.65 million electric 
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kilometres driven7. The RCN network operator is a renewable energy electricity company that generates 

and supplies near-zero carbon emission electricity (Ecotricity, 2015). As such, the RCN network has saved 

230 tonnes of CO2 when compared against the emissions which could have been produced by new 

registered cars (140 gCO2/km) (Department for Transport, 2015c). Expanding the fast charge 

infrastructure on road networks that carry a significant share of motorised traffic can support the 

electrification of kilometres driven on these roads and contribute to meeting decarbonisation goals. 

Governments and car manufacturers have financed the majority of the current pilot deployments of fast 

chargers (Pierre Ducharme and Catherine Kargas, 2016). Nonetheless, finding a profitable business case 

for future investment in fast charging is becoming imperative as government or automakers financial 

support of fast charging is unlikely to continue forever. Yet, at current BEV market share, fast charge 

networks might not be profitable in the near-term (Madina et al., 2016; Schroeder and Traber, 2012) to 

encourage private investment. This is a particular political challenge as withdrawing the financial support 

for the fast charge infrastructure too early, before the market and rates of BEV adoption have matured to 

a point where this support is no longer needed, could severely inhibit the growth in BEV numbers. As an 

example of this challenge, the UK government financed early deployments of fast chargers; however, 

current policy support for this type of infrastructure is not currently clear. The UK National Infrastructure 

Commission is a newly established agency that will identify and help build the UK’s future infrastructure 

needs (National Infrastructure Commission, 2016). The commission identifies the need to electrify 

transport; however, the importance of fast chargers hasn’t been highlighted yet as a key component 

necessary in the overall BEV infrastructure. In addition, the 2016 UK Autumn Statement- an economic 

statement made by the government every year identifying spending- mentions £120 million to support 

electric vehicles’ charging infrastructure (HM Treasury, 2016) but doesn’t specifically mention fast 

chargers.  

There are some limitations to this study. The daily driving results are based on a sample of 35 BEV drivers. 

The problem with small samples is that they are unable to capture the behaviour of the whole population 

of potential BEV owners. For example, this sample is based on private users and doesn’t include fleet 

drivers. Similarly to previous studies on BEVs, the participants of this work also fit the profile of BEV early 

adopters. Moreover, inferences about the causal relationship between fast chargers and long driving 

                                                           
7 Using an average EV energy consumption of 182.2 Wh/km as derived from the data loggers on the trial. 
300*106Wh/182.2Wh/km=1.65million km(Neaimeh et al., 2015). 
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distances cannot be drawn and this must be considered when interpreting the results.  

6. Conclusions and Policy Implications 

Data from the first large-scale roll-outs and evaluation projects of fast charging infrastructure and BEVs 

have been analysed to measure actual usage of fast chargers and demonstrate their importance in the 

overall BEV charging infrastructure. The findings from this work can inform subsequent studies on the 

topic and help shape the planning and deployment of future charging networks.  

The data from the fast charge networks showed that a typical energy transfer from fast chargers is 

approximately half of the vehicle battery capacity (Section 3.1). The majority of fast charging took place 

during the day with over 50% of the events began between 11:00 and 18:00 (Section 3.2). The analysis of 

energy data in the UK suggested a substantial usage of the fast charge infrastructure by plug-in-hybrids. 

These cars have a smaller battery to provide electric operation and a combustion engine to extend their 

vehicle range. This means that plug-in hybrid drivers don’t need to rely on charging infrastructure to 

complete their journeys. As such, it may be necessary to ensure that battery electric cars have a priority 

over plug-in-hybrids in using the fast charge infrastructure that can be essential for BEVs to complete their 

journeys. This finding is especially relevant for the fast charge network operators in the US considering 

the planned introduction of the plug-in Outlander, though it is not clear yet if the US model will be capable 

of fast charging (Mitsubishi US, 2017). 

In terms of transaction duration, 32% of the events in the UK and 21% of the events in the US were above 

30 minutes (Section 3.2). The charging rate slows down when the battery is close to full resulting in long 

charge events that impact the charger availability. Policies that would encourage the development and 

the enforcement of Information and communications technology (ICT) solutions for charging 

management can help reduce waiting time and queuing at the charging stations. Some of the proposed 

solutions include a charger reservation system(Zhang et al., 2015) or a platform that sends text messages 

to inform drivers that they had reached the maximum allowable time allocation on the fast charger 

(SmartCEM, 2015).  

Actual trip and charging event data of BEV owners over a period of 18 months were used to carry out an 

explorative multiple regression. The analysis examined the relationship between daily distance and 

standard and fast charging and showed that both predictors have a statistically significant and positive 

effect on daily distance. The relative importance of the predictors in the regression model was calculated 
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and fast charging was determined to be more influential than standard charging.  

In terms of policy support and planning for an overall charging infrastructure, it is important for relevant 

stakeholder to recognise that publically accessible fast chargers are an important feature of the overall 

charging infrastructure. Developing the BEVs market to reduce emissions from road transport could be 

predicated on the availability of a fast charge network that could help overcome perceived and actual 

range barriers to the adoption of BEVs. 

The fast charge infrastructure provision is expensive and its utilisation levels are going to be low in the 

coming few years (Jochem et al., 2016) which is not appealing to private investors. Policy makers will have 

to make a judgement on the costs of supporting the early development of this infrastructure and the 

associated adoption rates and emissions’ benefits. Evidence from this work can be used to justify decisions 

to dedicate some funding to specifically support fast chargers, at least initially, while it is still not attractive 

for investors.  

In 2015, 65% of the 28,000 fast chargers installed worldwide were located in China and Japan while these 

two countries accounted for 40% of the global BEV stock (IEA, 2016). Fast chargers can encourage more 

and more customers to opt for a battery electric vehicle and there is a vital need to accelerate the 

development of fast charge networks. 
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